MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eulem Structured version   Visualization version   GIF version

Theorem ablfac1eulem 20004
Description: Lemma for ablfac1eu 20005. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
ablfac1eulem.1 (𝜑𝑃 ∈ ℙ)
ablfac1eulem.2 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
ablfac1eulem (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑃,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑃(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eulem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3969 . 2 𝐴𝐴
2 ablfac1eulem.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3972 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
4 difeq1 4082 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = (∅ ∖ {𝑃}))
5 0dif 4368 . . . . . . . . . . . . 13 (∅ ∖ {𝑃}) = ∅
64, 5eqtrdi 2780 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = ∅)
76reseq2d 5950 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ∅))
8 res0 5954 . . . . . . . . . . 11 (𝑇 ↾ ∅) = ∅
97, 8eqtrdi 2780 . . . . . . . . . 10 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = ∅)
109oveq2d 7403 . . . . . . . . 9 (𝑦 = ∅ → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd ∅))
1110fveq2d 6862 . . . . . . . 8 (𝑦 = ∅ → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd ∅)))
1211breq2d 5119 . . . . . . 7 (𝑦 = ∅ → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
1312notbid 318 . . . . . 6 (𝑦 = ∅ → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
143, 13imbi12d 344 . . . . 5 (𝑦 = ∅ → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))))
1514imbi2d 340 . . . 4 (𝑦 = ∅ → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))))
16 sseq1 3972 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
17 difeq1 4082 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∖ {𝑃}) = (𝑧 ∖ {𝑃}))
1817reseq2d 5950 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
1918oveq2d 7403 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
2019fveq2d 6862 . . . . . . . 8 (𝑦 = 𝑧 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
2120breq2d 5119 . . . . . . 7 (𝑦 = 𝑧 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2221notbid 318 . . . . . 6 (𝑦 = 𝑧 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2316, 22imbi12d 344 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))))
2423imbi2d 340 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))))
25 sseq1 3972 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦𝐴 ↔ (𝑧 ∪ {𝑞}) ⊆ 𝐴))
26 difeq1 4082 . . . . . . . . . . 11 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦 ∖ {𝑃}) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
2726reseq2d 5950 . . . . . . . . . 10 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
2827oveq2d 7403 . . . . . . . . 9 (𝑦 = (𝑧 ∪ {𝑞}) → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))
2928fveq2d 6862 . . . . . . . 8 (𝑦 = (𝑧 ∪ {𝑞}) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
3029breq2d 5119 . . . . . . 7 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3130notbid 318 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3225, 31imbi12d 344 . . . . 5 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
3332imbi2d 340 . . . 4 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
34 sseq1 3972 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
35 difeq1 4082 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∖ {𝑃}) = (𝐴 ∖ {𝑃}))
3635reseq2d 5950 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝐴 ∖ {𝑃})))
3736oveq2d 7403 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))
3837fveq2d 6862 . . . . . . . 8 (𝑦 = 𝐴 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
3938breq2d 5119 . . . . . . 7 (𝑦 = 𝐴 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4039notbid 318 . . . . . 6 (𝑦 = 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4134, 40imbi12d 344 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
4241imbi2d 340 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))))
43 ablfac1eulem.1 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 nprmdvds1 16676 . . . . . . 7 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
4543, 44syl 17 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ 1)
46 ablfac1.g . . . . . . . . . . 11 (𝜑𝐺 ∈ Abel)
47 ablgrp 19715 . . . . . . . . . . 11 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
48 eqid 2729 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
4948dprd0 19963 . . . . . . . . . . 11 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5046, 47, 493syl 18 . . . . . . . . . 10 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5150simprd 495 . . . . . . . . 9 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
5251fveq2d 6862 . . . . . . . 8 (𝜑 → (♯‘(𝐺 DProd ∅)) = (♯‘{(0g𝐺)}))
53 fvex 6871 . . . . . . . . 9 (0g𝐺) ∈ V
54 hashsng 14334 . . . . . . . . 9 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
5553, 54ax-mp 5 . . . . . . . 8 (♯‘{(0g𝐺)}) = 1
5652, 55eqtrdi 2780 . . . . . . 7 (𝜑 → (♯‘(𝐺 DProd ∅)) = 1)
5756breq2d 5119 . . . . . 6 (𝜑 → (𝑃 ∥ (♯‘(𝐺 DProd ∅)) ↔ 𝑃 ∥ 1))
5845, 57mtbird 325 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))
5958a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
60 ssun1 4141 . . . . . . . . . 10 𝑧 ⊆ (𝑧 ∪ {𝑞})
61 sstr 3955 . . . . . . . . . 10 ((𝑧 ⊆ (𝑧 ∪ {𝑞}) ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴) → 𝑧𝐴)
6260, 61mpan 690 . . . . . . . . 9 ((𝑧 ∪ {𝑞}) ⊆ 𝐴𝑧𝐴)
6362imim1i 63 . . . . . . . 8 ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
64 ablfac1eu.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
6564simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺dom DProd 𝑇)
66 ablfac1eu.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝑇 = 𝐴)
6765, 66dprdf2 19939 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
6867adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑇:𝐴⟶(SubGrp‘𝐺))
69 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∪ {𝑞}) ⊆ 𝐴)
7069ssdifssd 4110 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) ⊆ 𝐴)
7168, 70fssresd 6727 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})):((𝑧 ∪ {𝑞}) ∖ {𝑃})⟶(SubGrp‘𝐺))
72 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑞𝑧)
73 disjsn 4675 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝑧)
7472, 73sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∩ {𝑞}) = ∅)
7574difeq1d 4088 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = (∅ ∖ {𝑃}))
76 difindir 4256 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃}))
7775, 76, 53eqtr3g 2787 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃})) = ∅)
78 difundir 4254 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃}))
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃})))
80 eqid 2729 . . . . . . . . . . . . . . . . 17 (LSSum‘𝐺) = (LSSum‘𝐺)
8165adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd 𝑇)
8266adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom 𝑇 = 𝐴)
8381, 82, 70dprdres 19960 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ∧ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) ⊆ (𝐺 DProd 𝑇)))
8483simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
8571, 77, 79, 80, 84dprdsplit 19980 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) = ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
8685fveq2d 6862 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
87 eqid 2729 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
8871fdmd 6698 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
89 ssdif 4107 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ⊆ (𝑧 ∪ {𝑞}) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9060, 89mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9184, 88, 90dprdres 19960 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9291simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))
93 dprdsubg 19956 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
95 ssun2 4142 . . . . . . . . . . . . . . . . . . . 20 {𝑞} ⊆ (𝑧 ∪ {𝑞})
96 ssdif 4107 . . . . . . . . . . . . . . . . . . . 20 ({𝑞} ⊆ (𝑧 ∪ {𝑞}) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9795, 96mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9884, 88, 97dprdres 19960 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9998simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))
100 dprdsubg 19956 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10199, 100syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10284, 88, 90, 97, 77, 48dprddisj2 19971 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∩ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = {(0g𝐺)})
10384, 88, 90, 97, 77, 87dprdcntz2 19970 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
104 ablfac1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ Fin)
105104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐵 ∈ Fin)
106 ablfac1.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐺)
107106dprdssv 19948 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
108 ssfi 9137 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
109105, 107, 108sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
110106dprdssv 19948 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
111 ssfi 9137 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
112105, 110, 111sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
11380, 48, 87, 94, 101, 102, 103, 109, 112lsmhash 19635 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
11490resabs1d 5979 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
115114oveq2d 7403 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
116115fveq2d 6862 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
11797resabs1d 5979 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
118117oveq2d 7403 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
119118fveq2d 6862 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
120116, 119oveq12d 7405 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
12186, 113, 1203eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
122121breq2d 5119 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ 𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
12343adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑃 ∈ ℙ)
124106dprdssv 19948 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
125 ssfi 9137 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
126105, 124, 125sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
127 hashcl 14321 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
128126, 127syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
129128nn0zd 12555 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ)
130106dprdssv 19948 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
131 ssfi 9137 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
132105, 130, 131sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
133 hashcl 14321 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
134132, 133syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
135134nn0zd 12555 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ)
136 euclemma 16683 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ ∧ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
137123, 129, 135, 136syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
138122, 137bitrd 279 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
13945ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ 1)
140 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → 𝑞 = 𝑃)
141140sneqd 4601 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → {𝑞} = {𝑃})
142141difeq1d 4088 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ({𝑃} ∖ {𝑃}))
143 difid 4339 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑃} ∖ {𝑃}) = ∅
144142, 143eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ∅)
145144reseq2d 5950 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ∅))
146145, 8eqtrdi 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = ∅)
147146oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd ∅))
14851ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd ∅) = {(0g𝐺)})
149147, 148eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = {(0g𝐺)})
150149fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘{(0g𝐺)}))
151150, 55eqtrdi 2780 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = 1)
152151breq2d 5119 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ 1))
153139, 152mtbird 325 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
154 ablfac1.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ⊆ ℙ)
155154adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐴 ⊆ ℙ)
15669unssbd 4157 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → {𝑞} ⊆ 𝐴)
157 vex 3451 . . . . . . . . . . . . . . . . . . . . . 22 𝑞 ∈ V
158157snss 4749 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝐴 ↔ {𝑞} ⊆ 𝐴)
159156, 158sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞𝐴)
160155, 159sseldd 3947 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞 ∈ ℙ)
161 ablfac1eu.3 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
162159, 161syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐶 ∈ ℕ0)
163 prmdvdsexpr 16687 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝐶 ∈ ℕ0) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
164123, 160, 162, 163syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
165 eqcom 2736 . . . . . . . . . . . . . . . . . 18 (𝑃 = 𝑞𝑞 = 𝑃)
166164, 165imbitrdi 251 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑞 = 𝑃))
167166necon3ad 2938 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑞𝑃 → ¬ 𝑃 ∥ (𝑞𝐶)))
168167imp 406 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (𝑞𝐶))
169 disjsn2 4676 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝑃 → ({𝑞} ∩ {𝑃}) = ∅)
170169adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ({𝑞} ∩ {𝑃}) = ∅)
171 disj3 4417 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑞} ∩ {𝑃}) = ∅ ↔ {𝑞} = ({𝑞} ∖ {𝑃}))
172170, 171sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → {𝑞} = ({𝑞} ∖ {𝑃}))
173172reseq2d 5950 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑇 ↾ {𝑞}) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
174173oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
17565ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝐺dom DProd 𝑇)
17666ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → dom 𝑇 = 𝐴)
177159adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝑞𝐴)
178175, 176, 177dpjlem 19983 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝑇𝑞))
179174, 178eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝑇𝑞))
180179fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝑇𝑞)))
181 ablfac1eu.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
182159, 181syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
183182adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
184180, 183eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (𝑞𝐶))
185184breq2d 5119 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ (𝑞𝐶)))
186168, 185mtbird 325 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
187153, 186pm2.61dane 3012 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
188 orel2 890 . . . . . . . . . . . . 13 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
189187, 188syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
190138, 189sylbid 240 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
191190con3d 152 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
192191expr 456 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
193192a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑞𝑧) → (((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
19463, 193syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
195194expcom 413 . . . . . 6 𝑞𝑧 → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
196195adantl 481 . . . . 5 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
197196a2d 29 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → ((𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))) → (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
19815, 24, 33, 42, 59, 197findcard2s 9129 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
1992, 198mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
2001, 199mpi 20 1 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188  dom cdm 5638  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069   · cmul 11073  0cn0 12442  cz 12529  cexp 14026  chash 14295  cdvds 16222  cprime 16641   pCnt cpc 16807  Basecbs 17179  0gc0g 17402  Grpcgrp 18865  SubGrpcsubg 19052  Cntzccntz 19247  odcod 19454  LSSumclsm 19564  Abelcabl 19711   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-pj1 19567  df-cmn 19712  df-abl 19713  df-dprd 19927
This theorem is referenced by:  ablfac1eu  20005
  Copyright terms: Public domain W3C validator