MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eulem Structured version   Visualization version   GIF version

Theorem ablfac1eulem 19675
Description: Lemma for ablfac1eu 19676. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
ablfac1eulem.1 (𝜑𝑃 ∈ ℙ)
ablfac1eulem.2 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
ablfac1eulem (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑃,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑃(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eulem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3943 . 2 𝐴𝐴
2 ablfac1eulem.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3946 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
4 difeq1 4050 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = (∅ ∖ {𝑃}))
5 0dif 4335 . . . . . . . . . . . . 13 (∅ ∖ {𝑃}) = ∅
64, 5eqtrdi 2794 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = ∅)
76reseq2d 5891 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ∅))
8 res0 5895 . . . . . . . . . . 11 (𝑇 ↾ ∅) = ∅
97, 8eqtrdi 2794 . . . . . . . . . 10 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = ∅)
109oveq2d 7291 . . . . . . . . 9 (𝑦 = ∅ → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd ∅))
1110fveq2d 6778 . . . . . . . 8 (𝑦 = ∅ → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd ∅)))
1211breq2d 5086 . . . . . . 7 (𝑦 = ∅ → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
1312notbid 318 . . . . . 6 (𝑦 = ∅ → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
143, 13imbi12d 345 . . . . 5 (𝑦 = ∅ → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))))
1514imbi2d 341 . . . 4 (𝑦 = ∅ → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))))
16 sseq1 3946 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
17 difeq1 4050 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∖ {𝑃}) = (𝑧 ∖ {𝑃}))
1817reseq2d 5891 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
1918oveq2d 7291 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
2019fveq2d 6778 . . . . . . . 8 (𝑦 = 𝑧 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
2120breq2d 5086 . . . . . . 7 (𝑦 = 𝑧 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2221notbid 318 . . . . . 6 (𝑦 = 𝑧 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2316, 22imbi12d 345 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))))
2423imbi2d 341 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))))
25 sseq1 3946 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦𝐴 ↔ (𝑧 ∪ {𝑞}) ⊆ 𝐴))
26 difeq1 4050 . . . . . . . . . . 11 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦 ∖ {𝑃}) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
2726reseq2d 5891 . . . . . . . . . 10 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
2827oveq2d 7291 . . . . . . . . 9 (𝑦 = (𝑧 ∪ {𝑞}) → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))
2928fveq2d 6778 . . . . . . . 8 (𝑦 = (𝑧 ∪ {𝑞}) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
3029breq2d 5086 . . . . . . 7 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3130notbid 318 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3225, 31imbi12d 345 . . . . 5 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
3332imbi2d 341 . . . 4 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
34 sseq1 3946 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
35 difeq1 4050 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∖ {𝑃}) = (𝐴 ∖ {𝑃}))
3635reseq2d 5891 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝐴 ∖ {𝑃})))
3736oveq2d 7291 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))
3837fveq2d 6778 . . . . . . . 8 (𝑦 = 𝐴 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
3938breq2d 5086 . . . . . . 7 (𝑦 = 𝐴 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4039notbid 318 . . . . . 6 (𝑦 = 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4134, 40imbi12d 345 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
4241imbi2d 341 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))))
43 ablfac1eulem.1 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 nprmdvds1 16411 . . . . . . 7 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
4543, 44syl 17 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ 1)
46 ablfac1.g . . . . . . . . . . 11 (𝜑𝐺 ∈ Abel)
47 ablgrp 19391 . . . . . . . . . . 11 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
48 eqid 2738 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
4948dprd0 19634 . . . . . . . . . . 11 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5046, 47, 493syl 18 . . . . . . . . . 10 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5150simprd 496 . . . . . . . . 9 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
5251fveq2d 6778 . . . . . . . 8 (𝜑 → (♯‘(𝐺 DProd ∅)) = (♯‘{(0g𝐺)}))
53 fvex 6787 . . . . . . . . 9 (0g𝐺) ∈ V
54 hashsng 14084 . . . . . . . . 9 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
5553, 54ax-mp 5 . . . . . . . 8 (♯‘{(0g𝐺)}) = 1
5652, 55eqtrdi 2794 . . . . . . 7 (𝜑 → (♯‘(𝐺 DProd ∅)) = 1)
5756breq2d 5086 . . . . . 6 (𝜑 → (𝑃 ∥ (♯‘(𝐺 DProd ∅)) ↔ 𝑃 ∥ 1))
5845, 57mtbird 325 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))
5958a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
60 ssun1 4106 . . . . . . . . . 10 𝑧 ⊆ (𝑧 ∪ {𝑞})
61 sstr 3929 . . . . . . . . . 10 ((𝑧 ⊆ (𝑧 ∪ {𝑞}) ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴) → 𝑧𝐴)
6260, 61mpan 687 . . . . . . . . 9 ((𝑧 ∪ {𝑞}) ⊆ 𝐴𝑧𝐴)
6362imim1i 63 . . . . . . . 8 ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
64 ablfac1eu.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
6564simpld 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺dom DProd 𝑇)
66 ablfac1eu.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝑇 = 𝐴)
6765, 66dprdf2 19610 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
6867adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑇:𝐴⟶(SubGrp‘𝐺))
69 simprr 770 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∪ {𝑞}) ⊆ 𝐴)
7069ssdifssd 4077 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) ⊆ 𝐴)
7168, 70fssresd 6641 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})):((𝑧 ∪ {𝑞}) ∖ {𝑃})⟶(SubGrp‘𝐺))
72 simprl 768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑞𝑧)
73 disjsn 4647 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝑧)
7472, 73sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∩ {𝑞}) = ∅)
7574difeq1d 4056 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = (∅ ∖ {𝑃}))
76 difindir 4216 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃}))
7775, 76, 53eqtr3g 2801 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃})) = ∅)
78 difundir 4214 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃}))
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃})))
80 eqid 2738 . . . . . . . . . . . . . . . . 17 (LSSum‘𝐺) = (LSSum‘𝐺)
8165adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd 𝑇)
8266adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom 𝑇 = 𝐴)
8381, 82, 70dprdres 19631 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ∧ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) ⊆ (𝐺 DProd 𝑇)))
8483simpld 495 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
8571, 77, 79, 80, 84dprdsplit 19651 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) = ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
8685fveq2d 6778 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
87 eqid 2738 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
8871fdmd 6611 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
89 ssdif 4074 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ⊆ (𝑧 ∪ {𝑞}) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9060, 89mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9184, 88, 90dprdres 19631 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9291simpld 495 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))
93 dprdsubg 19627 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
95 ssun2 4107 . . . . . . . . . . . . . . . . . . . 20 {𝑞} ⊆ (𝑧 ∪ {𝑞})
96 ssdif 4074 . . . . . . . . . . . . . . . . . . . 20 ({𝑞} ⊆ (𝑧 ∪ {𝑞}) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9795, 96mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9884, 88, 97dprdres 19631 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9998simpld 495 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))
100 dprdsubg 19627 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10199, 100syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10284, 88, 90, 97, 77, 48dprddisj2 19642 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∩ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = {(0g𝐺)})
10384, 88, 90, 97, 77, 87dprdcntz2 19641 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
104 ablfac1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ Fin)
105104adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐵 ∈ Fin)
106 ablfac1.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐺)
107106dprdssv 19619 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
108 ssfi 8956 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
109105, 107, 108sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
110106dprdssv 19619 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
111 ssfi 8956 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
112105, 110, 111sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
11380, 48, 87, 94, 101, 102, 103, 109, 112lsmhash 19311 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
11490resabs1d 5922 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
115114oveq2d 7291 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
116115fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
11797resabs1d 5922 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
118117oveq2d 7291 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
119118fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
120116, 119oveq12d 7293 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
12186, 113, 1203eqtrd 2782 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
122121breq2d 5086 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ 𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
12343adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑃 ∈ ℙ)
124106dprdssv 19619 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
125 ssfi 8956 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
126105, 124, 125sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
127 hashcl 14071 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
128126, 127syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
129128nn0zd 12424 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ)
130106dprdssv 19619 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
131 ssfi 8956 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
132105, 130, 131sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
133 hashcl 14071 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
134132, 133syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
135134nn0zd 12424 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ)
136 euclemma 16418 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ ∧ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
137123, 129, 135, 136syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
138122, 137bitrd 278 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
13945ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ 1)
140 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → 𝑞 = 𝑃)
141140sneqd 4573 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → {𝑞} = {𝑃})
142141difeq1d 4056 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ({𝑃} ∖ {𝑃}))
143 difid 4304 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑃} ∖ {𝑃}) = ∅
144142, 143eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ∅)
145144reseq2d 5891 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ∅))
146145, 8eqtrdi 2794 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = ∅)
147146oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd ∅))
14851ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd ∅) = {(0g𝐺)})
149147, 148eqtrd 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = {(0g𝐺)})
150149fveq2d 6778 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘{(0g𝐺)}))
151150, 55eqtrdi 2794 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = 1)
152151breq2d 5086 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ 1))
153139, 152mtbird 325 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
154 ablfac1.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ⊆ ℙ)
155154adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐴 ⊆ ℙ)
15669unssbd 4122 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → {𝑞} ⊆ 𝐴)
157 vex 3436 . . . . . . . . . . . . . . . . . . . . . 22 𝑞 ∈ V
158157snss 4719 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝐴 ↔ {𝑞} ⊆ 𝐴)
159156, 158sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞𝐴)
160155, 159sseldd 3922 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞 ∈ ℙ)
161 ablfac1eu.3 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
162159, 161syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐶 ∈ ℕ0)
163 prmdvdsexpr 16422 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝐶 ∈ ℕ0) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
164123, 160, 162, 163syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
165 eqcom 2745 . . . . . . . . . . . . . . . . . 18 (𝑃 = 𝑞𝑞 = 𝑃)
166164, 165syl6ib 250 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑞 = 𝑃))
167166necon3ad 2956 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑞𝑃 → ¬ 𝑃 ∥ (𝑞𝐶)))
168167imp 407 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (𝑞𝐶))
169 disjsn2 4648 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝑃 → ({𝑞} ∩ {𝑃}) = ∅)
170169adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ({𝑞} ∩ {𝑃}) = ∅)
171 disj3 4387 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑞} ∩ {𝑃}) = ∅ ↔ {𝑞} = ({𝑞} ∖ {𝑃}))
172170, 171sylib 217 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → {𝑞} = ({𝑞} ∖ {𝑃}))
173172reseq2d 5891 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑇 ↾ {𝑞}) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
174173oveq2d 7291 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
17565ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝐺dom DProd 𝑇)
17666ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → dom 𝑇 = 𝐴)
177159adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝑞𝐴)
178175, 176, 177dpjlem 19654 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝑇𝑞))
179174, 178eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝑇𝑞))
180179fveq2d 6778 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝑇𝑞)))
181 ablfac1eu.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
182159, 181syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
183182adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
184180, 183eqtrd 2778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (𝑞𝐶))
185184breq2d 5086 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ (𝑞𝐶)))
186168, 185mtbird 325 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
187153, 186pm2.61dane 3032 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
188 orel2 888 . . . . . . . . . . . . 13 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
189187, 188syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
190138, 189sylbid 239 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
191190con3d 152 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
192191expr 457 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
193192a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑞𝑧) → (((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
19463, 193syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
195194expcom 414 . . . . . 6 𝑞𝑧 → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
196195adantl 482 . . . . 5 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
197196a2d 29 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → ((𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))) → (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
19815, 24, 33, 42, 59, 197findcard2s 8948 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
1992, 198mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
2001, 199mpi 20 1 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  1c1 10872   · cmul 10876  0cn0 12233  cz 12319  cexp 13782  chash 14044  cdvds 15963  cprime 16376   pCnt cpc 16537  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  SubGrpcsubg 18749  Cntzccntz 18921  odcod 19132  LSSumclsm 19239  Abelcabl 19387   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-pj1 19242  df-cmn 19388  df-abl 19389  df-dprd 19598
This theorem is referenced by:  ablfac1eu  19676
  Copyright terms: Public domain W3C validator