MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eulem Structured version   Visualization version   GIF version

Theorem ablfac1eulem 19851
Description: Lemma for ablfac1eu 19852. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
ablfac1eulem.1 (𝜑𝑃 ∈ ℙ)
ablfac1eulem.2 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
ablfac1eulem (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑃,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑃(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eulem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3966 . 2 𝐴𝐴
2 ablfac1eulem.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3969 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
4 difeq1 4075 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = (∅ ∖ {𝑃}))
5 0dif 4361 . . . . . . . . . . . . 13 (∅ ∖ {𝑃}) = ∅
64, 5eqtrdi 2792 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = ∅)
76reseq2d 5937 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ∅))
8 res0 5941 . . . . . . . . . . 11 (𝑇 ↾ ∅) = ∅
97, 8eqtrdi 2792 . . . . . . . . . 10 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = ∅)
109oveq2d 7373 . . . . . . . . 9 (𝑦 = ∅ → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd ∅))
1110fveq2d 6846 . . . . . . . 8 (𝑦 = ∅ → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd ∅)))
1211breq2d 5117 . . . . . . 7 (𝑦 = ∅ → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
1312notbid 317 . . . . . 6 (𝑦 = ∅ → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
143, 13imbi12d 344 . . . . 5 (𝑦 = ∅ → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))))
1514imbi2d 340 . . . 4 (𝑦 = ∅ → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))))
16 sseq1 3969 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
17 difeq1 4075 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∖ {𝑃}) = (𝑧 ∖ {𝑃}))
1817reseq2d 5937 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
1918oveq2d 7373 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
2019fveq2d 6846 . . . . . . . 8 (𝑦 = 𝑧 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
2120breq2d 5117 . . . . . . 7 (𝑦 = 𝑧 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2221notbid 317 . . . . . 6 (𝑦 = 𝑧 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2316, 22imbi12d 344 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))))
2423imbi2d 340 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))))
25 sseq1 3969 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦𝐴 ↔ (𝑧 ∪ {𝑞}) ⊆ 𝐴))
26 difeq1 4075 . . . . . . . . . . 11 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦 ∖ {𝑃}) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
2726reseq2d 5937 . . . . . . . . . 10 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
2827oveq2d 7373 . . . . . . . . 9 (𝑦 = (𝑧 ∪ {𝑞}) → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))
2928fveq2d 6846 . . . . . . . 8 (𝑦 = (𝑧 ∪ {𝑞}) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
3029breq2d 5117 . . . . . . 7 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3130notbid 317 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3225, 31imbi12d 344 . . . . 5 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
3332imbi2d 340 . . . 4 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
34 sseq1 3969 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
35 difeq1 4075 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∖ {𝑃}) = (𝐴 ∖ {𝑃}))
3635reseq2d 5937 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝐴 ∖ {𝑃})))
3736oveq2d 7373 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))
3837fveq2d 6846 . . . . . . . 8 (𝑦 = 𝐴 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
3938breq2d 5117 . . . . . . 7 (𝑦 = 𝐴 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4039notbid 317 . . . . . 6 (𝑦 = 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4134, 40imbi12d 344 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
4241imbi2d 340 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))))
43 ablfac1eulem.1 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 nprmdvds1 16582 . . . . . . 7 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
4543, 44syl 17 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ 1)
46 ablfac1.g . . . . . . . . . . 11 (𝜑𝐺 ∈ Abel)
47 ablgrp 19567 . . . . . . . . . . 11 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
48 eqid 2736 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
4948dprd0 19810 . . . . . . . . . . 11 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5046, 47, 493syl 18 . . . . . . . . . 10 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5150simprd 496 . . . . . . . . 9 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
5251fveq2d 6846 . . . . . . . 8 (𝜑 → (♯‘(𝐺 DProd ∅)) = (♯‘{(0g𝐺)}))
53 fvex 6855 . . . . . . . . 9 (0g𝐺) ∈ V
54 hashsng 14269 . . . . . . . . 9 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
5553, 54ax-mp 5 . . . . . . . 8 (♯‘{(0g𝐺)}) = 1
5652, 55eqtrdi 2792 . . . . . . 7 (𝜑 → (♯‘(𝐺 DProd ∅)) = 1)
5756breq2d 5117 . . . . . 6 (𝜑 → (𝑃 ∥ (♯‘(𝐺 DProd ∅)) ↔ 𝑃 ∥ 1))
5845, 57mtbird 324 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))
5958a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
60 ssun1 4132 . . . . . . . . . 10 𝑧 ⊆ (𝑧 ∪ {𝑞})
61 sstr 3952 . . . . . . . . . 10 ((𝑧 ⊆ (𝑧 ∪ {𝑞}) ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴) → 𝑧𝐴)
6260, 61mpan 688 . . . . . . . . 9 ((𝑧 ∪ {𝑞}) ⊆ 𝐴𝑧𝐴)
6362imim1i 63 . . . . . . . 8 ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
64 ablfac1eu.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
6564simpld 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺dom DProd 𝑇)
66 ablfac1eu.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝑇 = 𝐴)
6765, 66dprdf2 19786 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
6867adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑇:𝐴⟶(SubGrp‘𝐺))
69 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∪ {𝑞}) ⊆ 𝐴)
7069ssdifssd 4102 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) ⊆ 𝐴)
7168, 70fssresd 6709 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})):((𝑧 ∪ {𝑞}) ∖ {𝑃})⟶(SubGrp‘𝐺))
72 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑞𝑧)
73 disjsn 4672 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝑧)
7472, 73sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∩ {𝑞}) = ∅)
7574difeq1d 4081 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = (∅ ∖ {𝑃}))
76 difindir 4242 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃}))
7775, 76, 53eqtr3g 2799 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃})) = ∅)
78 difundir 4240 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃}))
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃})))
80 eqid 2736 . . . . . . . . . . . . . . . . 17 (LSSum‘𝐺) = (LSSum‘𝐺)
8165adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd 𝑇)
8266adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom 𝑇 = 𝐴)
8381, 82, 70dprdres 19807 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ∧ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) ⊆ (𝐺 DProd 𝑇)))
8483simpld 495 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
8571, 77, 79, 80, 84dprdsplit 19827 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) = ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
8685fveq2d 6846 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
87 eqid 2736 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
8871fdmd 6679 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
89 ssdif 4099 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ⊆ (𝑧 ∪ {𝑞}) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9060, 89mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9184, 88, 90dprdres 19807 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9291simpld 495 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))
93 dprdsubg 19803 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
95 ssun2 4133 . . . . . . . . . . . . . . . . . . . 20 {𝑞} ⊆ (𝑧 ∪ {𝑞})
96 ssdif 4099 . . . . . . . . . . . . . . . . . . . 20 ({𝑞} ⊆ (𝑧 ∪ {𝑞}) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9795, 96mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9884, 88, 97dprdres 19807 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9998simpld 495 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))
100 dprdsubg 19803 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10199, 100syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10284, 88, 90, 97, 77, 48dprddisj2 19818 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∩ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = {(0g𝐺)})
10384, 88, 90, 97, 77, 87dprdcntz2 19817 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
104 ablfac1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ Fin)
105104adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐵 ∈ Fin)
106 ablfac1.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐺)
107106dprdssv 19795 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
108 ssfi 9117 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
109105, 107, 108sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
110106dprdssv 19795 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
111 ssfi 9117 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
112105, 110, 111sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
11380, 48, 87, 94, 101, 102, 103, 109, 112lsmhash 19487 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
11490resabs1d 5968 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
115114oveq2d 7373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
116115fveq2d 6846 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
11797resabs1d 5968 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
118117oveq2d 7373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
119118fveq2d 6846 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
120116, 119oveq12d 7375 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
12186, 113, 1203eqtrd 2780 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
122121breq2d 5117 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ 𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
12343adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑃 ∈ ℙ)
124106dprdssv 19795 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
125 ssfi 9117 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
126105, 124, 125sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
127 hashcl 14256 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
128126, 127syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
129128nn0zd 12525 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ)
130106dprdssv 19795 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
131 ssfi 9117 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
132105, 130, 131sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
133 hashcl 14256 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
134132, 133syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
135134nn0zd 12525 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ)
136 euclemma 16589 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ ∧ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
137123, 129, 135, 136syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
138122, 137bitrd 278 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
13945ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ 1)
140 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → 𝑞 = 𝑃)
141140sneqd 4598 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → {𝑞} = {𝑃})
142141difeq1d 4081 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ({𝑃} ∖ {𝑃}))
143 difid 4330 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑃} ∖ {𝑃}) = ∅
144142, 143eqtrdi 2792 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ∅)
145144reseq2d 5937 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ∅))
146145, 8eqtrdi 2792 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = ∅)
147146oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd ∅))
14851ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd ∅) = {(0g𝐺)})
149147, 148eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = {(0g𝐺)})
150149fveq2d 6846 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘{(0g𝐺)}))
151150, 55eqtrdi 2792 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = 1)
152151breq2d 5117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ 1))
153139, 152mtbird 324 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
154 ablfac1.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ⊆ ℙ)
155154adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐴 ⊆ ℙ)
15669unssbd 4148 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → {𝑞} ⊆ 𝐴)
157 vex 3449 . . . . . . . . . . . . . . . . . . . . . 22 𝑞 ∈ V
158157snss 4746 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝐴 ↔ {𝑞} ⊆ 𝐴)
159156, 158sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞𝐴)
160155, 159sseldd 3945 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞 ∈ ℙ)
161 ablfac1eu.3 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
162159, 161syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐶 ∈ ℕ0)
163 prmdvdsexpr 16593 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝐶 ∈ ℕ0) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
164123, 160, 162, 163syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
165 eqcom 2743 . . . . . . . . . . . . . . . . . 18 (𝑃 = 𝑞𝑞 = 𝑃)
166164, 165syl6ib 250 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑞 = 𝑃))
167166necon3ad 2956 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑞𝑃 → ¬ 𝑃 ∥ (𝑞𝐶)))
168167imp 407 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (𝑞𝐶))
169 disjsn2 4673 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝑃 → ({𝑞} ∩ {𝑃}) = ∅)
170169adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ({𝑞} ∩ {𝑃}) = ∅)
171 disj3 4413 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑞} ∩ {𝑃}) = ∅ ↔ {𝑞} = ({𝑞} ∖ {𝑃}))
172170, 171sylib 217 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → {𝑞} = ({𝑞} ∖ {𝑃}))
173172reseq2d 5937 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑇 ↾ {𝑞}) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
174173oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
17565ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝐺dom DProd 𝑇)
17666ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → dom 𝑇 = 𝐴)
177159adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝑞𝐴)
178175, 176, 177dpjlem 19830 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝑇𝑞))
179174, 178eqtr3d 2778 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝑇𝑞))
180179fveq2d 6846 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝑇𝑞)))
181 ablfac1eu.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
182159, 181syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
183182adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
184180, 183eqtrd 2776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (𝑞𝐶))
185184breq2d 5117 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ (𝑞𝐶)))
186168, 185mtbird 324 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
187153, 186pm2.61dane 3032 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
188 orel2 889 . . . . . . . . . . . . 13 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
189187, 188syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
190138, 189sylbid 239 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
191190con3d 152 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
192191expr 457 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
193192a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑞𝑧) → (((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
19463, 193syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
195194expcom 414 . . . . . 6 𝑞𝑧 → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
196195adantl 482 . . . . 5 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
197196a2d 29 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → ((𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))) → (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
19815, 24, 33, 42, 59, 197findcard2s 9109 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
1992, 198mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
2001, 199mpi 20 1 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188  dom cdm 5633  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  1c1 11052   · cmul 11056  0cn0 12413  cz 12499  cexp 13967  chash 14230  cdvds 16136  cprime 16547   pCnt cpc 16708  Basecbs 17083  0gc0g 17321  Grpcgrp 18748  SubGrpcsubg 18922  Cntzccntz 19095  odcod 19306  LSSumclsm 19416  Abelcabl 19563   DProd cdprd 19772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-gim 19049  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-pj1 19419  df-cmn 19564  df-abl 19565  df-dprd 19774
This theorem is referenced by:  ablfac1eu  19852
  Copyright terms: Public domain W3C validator