MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1eulem Structured version   Visualization version   GIF version

Theorem ablfac1eulem 19971
Description: Lemma for ablfac1eu 19972. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
ablfac1eu.1 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
ablfac1eu.2 (𝜑 → dom 𝑇 = 𝐴)
ablfac1eu.3 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
ablfac1eu.4 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
ablfac1eulem.1 (𝜑𝑃 ∈ ℙ)
ablfac1eulem.2 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
ablfac1eulem (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Distinct variable groups:   𝑞,𝑝,𝑤,𝑥,𝐵   𝐷,𝑝,𝑞,𝑥   𝜑,𝑝,𝑞,𝑤,𝑥   𝑆,𝑞   𝐴,𝑝,𝑞,𝑥   𝑂,𝑝,𝑞,𝑥   𝑃,𝑝,𝑞,𝑥   𝑇,𝑞,𝑥   𝐺,𝑝,𝑞,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑞,𝑝)   𝐷(𝑤)   𝑃(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝑇(𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1eulem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3960 . 2 𝐴𝐴
2 ablfac1eulem.2 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3963 . . . . . 6 (𝑦 = ∅ → (𝑦𝐴 ↔ ∅ ⊆ 𝐴))
4 difeq1 4072 . . . . . . . . . . . . 13 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = (∅ ∖ {𝑃}))
5 0dif 4358 . . . . . . . . . . . . 13 (∅ ∖ {𝑃}) = ∅
64, 5eqtrdi 2780 . . . . . . . . . . . 12 (𝑦 = ∅ → (𝑦 ∖ {𝑃}) = ∅)
76reseq2d 5934 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ∅))
8 res0 5938 . . . . . . . . . . 11 (𝑇 ↾ ∅) = ∅
97, 8eqtrdi 2780 . . . . . . . . . 10 (𝑦 = ∅ → (𝑇 ↾ (𝑦 ∖ {𝑃})) = ∅)
109oveq2d 7369 . . . . . . . . 9 (𝑦 = ∅ → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd ∅))
1110fveq2d 6830 . . . . . . . 8 (𝑦 = ∅ → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd ∅)))
1211breq2d 5107 . . . . . . 7 (𝑦 = ∅ → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
1312notbid 318 . . . . . 6 (𝑦 = ∅ → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
143, 13imbi12d 344 . . . . 5 (𝑦 = ∅ → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))))
1514imbi2d 340 . . . 4 (𝑦 = ∅ → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))))
16 sseq1 3963 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
17 difeq1 4072 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∖ {𝑃}) = (𝑧 ∖ {𝑃}))
1817reseq2d 5934 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
1918oveq2d 7369 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
2019fveq2d 6830 . . . . . . . 8 (𝑦 = 𝑧 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
2120breq2d 5107 . . . . . . 7 (𝑦 = 𝑧 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2221notbid 318 . . . . . 6 (𝑦 = 𝑧 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
2316, 22imbi12d 344 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))))
2423imbi2d 340 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))))
25 sseq1 3963 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦𝐴 ↔ (𝑧 ∪ {𝑞}) ⊆ 𝐴))
26 difeq1 4072 . . . . . . . . . . 11 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑦 ∖ {𝑃}) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
2726reseq2d 5934 . . . . . . . . . 10 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
2827oveq2d 7369 . . . . . . . . 9 (𝑦 = (𝑧 ∪ {𝑞}) → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))
2928fveq2d 6830 . . . . . . . 8 (𝑦 = (𝑧 ∪ {𝑞}) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
3029breq2d 5107 . . . . . . 7 (𝑦 = (𝑧 ∪ {𝑞}) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3130notbid 318 . . . . . 6 (𝑦 = (𝑧 ∪ {𝑞}) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
3225, 31imbi12d 344 . . . . 5 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
3332imbi2d 340 . . . 4 (𝑦 = (𝑧 ∪ {𝑞}) → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
34 sseq1 3963 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
35 difeq1 4072 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∖ {𝑃}) = (𝐴 ∖ {𝑃}))
3635reseq2d 5934 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑇 ↾ (𝑦 ∖ {𝑃})) = (𝑇 ↾ (𝐴 ∖ {𝑃})))
3736oveq2d 7369 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))
3837fveq2d 6830 . . . . . . . 8 (𝑦 = 𝐴 → (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
3938breq2d 5107 . . . . . . 7 (𝑦 = 𝐴 → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4039notbid 318 . . . . . 6 (𝑦 = 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))) ↔ ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
4134, 40imbi12d 344 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃}))))) ↔ (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
4241imbi2d 340 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑦 ∖ {𝑃})))))) ↔ (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))))
43 ablfac1eulem.1 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
44 nprmdvds1 16635 . . . . . . 7 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
4543, 44syl 17 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ 1)
46 ablfac1.g . . . . . . . . . . 11 (𝜑𝐺 ∈ Abel)
47 ablgrp 19682 . . . . . . . . . . 11 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
48 eqid 2729 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
4948dprd0 19930 . . . . . . . . . . 11 (𝐺 ∈ Grp → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5046, 47, 493syl 18 . . . . . . . . . 10 (𝜑 → (𝐺dom DProd ∅ ∧ (𝐺 DProd ∅) = {(0g𝐺)}))
5150simprd 495 . . . . . . . . 9 (𝜑 → (𝐺 DProd ∅) = {(0g𝐺)})
5251fveq2d 6830 . . . . . . . 8 (𝜑 → (♯‘(𝐺 DProd ∅)) = (♯‘{(0g𝐺)}))
53 fvex 6839 . . . . . . . . 9 (0g𝐺) ∈ V
54 hashsng 14294 . . . . . . . . 9 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
5553, 54ax-mp 5 . . . . . . . 8 (♯‘{(0g𝐺)}) = 1
5652, 55eqtrdi 2780 . . . . . . 7 (𝜑 → (♯‘(𝐺 DProd ∅)) = 1)
5756breq2d 5107 . . . . . 6 (𝜑 → (𝑃 ∥ (♯‘(𝐺 DProd ∅)) ↔ 𝑃 ∥ 1))
5845, 57mtbird 325 . . . . 5 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅)))
5958a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd ∅))))
60 ssun1 4131 . . . . . . . . . 10 𝑧 ⊆ (𝑧 ∪ {𝑞})
61 sstr 3946 . . . . . . . . . 10 ((𝑧 ⊆ (𝑧 ∪ {𝑞}) ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴) → 𝑧𝐴)
6260, 61mpan 690 . . . . . . . . 9 ((𝑧 ∪ {𝑞}) ⊆ 𝐴𝑧𝐴)
6362imim1i 63 . . . . . . . 8 ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
64 ablfac1eu.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐺dom DProd 𝑇 ∧ (𝐺 DProd 𝑇) = 𝐵))
6564simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺dom DProd 𝑇)
66 ablfac1eu.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝑇 = 𝐴)
6765, 66dprdf2 19906 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇:𝐴⟶(SubGrp‘𝐺))
6867adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑇:𝐴⟶(SubGrp‘𝐺))
69 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∪ {𝑞}) ⊆ 𝐴)
7069ssdifssd 4100 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) ⊆ 𝐴)
7168, 70fssresd 6695 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})):((𝑧 ∪ {𝑞}) ∖ {𝑃})⟶(SubGrp‘𝐺))
72 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑞𝑧)
73 disjsn 4665 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∩ {𝑞}) = ∅ ↔ ¬ 𝑞𝑧)
7472, 73sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∩ {𝑞}) = ∅)
7574difeq1d 4078 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = (∅ ∖ {𝑃}))
76 difindir 4246 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∩ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃}))
7775, 76, 53eqtr3g 2787 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∖ {𝑃}) ∩ ({𝑞} ∖ {𝑃})) = ∅)
78 difundir 4244 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃}))
7978a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑧 ∪ {𝑞}) ∖ {𝑃}) = ((𝑧 ∖ {𝑃}) ∪ ({𝑞} ∖ {𝑃})))
80 eqid 2729 . . . . . . . . . . . . . . . . 17 (LSSum‘𝐺) = (LSSum‘𝐺)
8165adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd 𝑇)
8266adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom 𝑇 = 𝐴)
8381, 82, 70dprdres 19927 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ∧ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) ⊆ (𝐺 DProd 𝑇)))
8483simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))
8571, 77, 79, 80, 84dprdsplit 19947 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))) = ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
8685fveq2d 6830 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
87 eqid 2729 . . . . . . . . . . . . . . . 16 (Cntz‘𝐺) = (Cntz‘𝐺)
8871fdmd 6666 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → dom (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) = ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
89 ssdif 4097 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ⊆ (𝑧 ∪ {𝑞}) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9060, 89mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑧 ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9184, 88, 90dprdres 19927 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9291simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))
93 dprdsubg 19923 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
95 ssun2 4132 . . . . . . . . . . . . . . . . . . . 20 {𝑞} ⊆ (𝑧 ∪ {𝑞})
96 ssdif 4097 . . . . . . . . . . . . . . . . . . . 20 ({𝑞} ⊆ (𝑧 ∪ {𝑞}) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9795, 96mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ({𝑞} ∖ {𝑃}) ⊆ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))
9884, 88, 97dprdres 19927 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ (𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))
9998simpld 494 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))
100 dprdsubg 19923 . . . . . . . . . . . . . . . . 17 (𝐺dom DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10199, 100syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ (SubGrp‘𝐺))
10284, 88, 90, 97, 77, 48dprddisj2 19938 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∩ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = {(0g𝐺)})
10384, 88, 90, 97, 77, 87dprdcntz2 19937 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))))
104 ablfac1.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ Fin)
105104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐵 ∈ Fin)
106 ablfac1.b . . . . . . . . . . . . . . . . . 18 𝐵 = (Base‘𝐺)
107106dprdssv 19915 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
108 ssfi 9097 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
109105, 107, 108sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
110106dprdssv 19915 . . . . . . . . . . . . . . . . 17 (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
111 ssfi 9097 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
112105, 110, 111sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
11380, 48, 87, 94, 101, 102, 103, 109, 112lsmhash 19602 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘((𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))(LSSum‘𝐺)(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))))
11490resabs1d 5963 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})) = (𝑇 ↾ (𝑧 ∖ {𝑃})))
115114oveq2d 7369 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))
116115fveq2d 6830 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))
11797resabs1d 5963 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
118117oveq2d 7369 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
119118fveq2d 6830 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
120116, 119oveq12d 7371 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd ((𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})) ↾ ({𝑞} ∖ {𝑃}))))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
12186, 113, 1203eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) = ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))))
122121breq2d 5107 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ 𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
12343adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑃 ∈ ℙ)
124106dprdssv 19915 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵
125 ssfi 9097 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
126105, 124, 125sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin)
127 hashcl 14281 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
128126, 127syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℕ0)
129128nn0zd 12515 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ)
130106dprdssv 19915 . . . . . . . . . . . . . . . . 17 (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵
131 ssfi 9097 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ Fin ∧ (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ⊆ 𝐵) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
132105, 130, 131sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin)
133 hashcl 14281 . . . . . . . . . . . . . . . 16 ((𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) ∈ Fin → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
134132, 133syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℕ0)
135134nn0zd 12515 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ)
136 euclemma 16642 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∈ ℤ ∧ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ∈ ℤ) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
137123, 129, 135, 136syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ ((♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) · (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
138122, 137bitrd 279 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) ↔ (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))))
13945ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ 1)
140 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → 𝑞 = 𝑃)
141140sneqd 4591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → {𝑞} = {𝑃})
142141difeq1d 4078 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ({𝑃} ∖ {𝑃}))
143 difid 4329 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑃} ∖ {𝑃}) = ∅
144142, 143eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ({𝑞} ∖ {𝑃}) = ∅)
145144reseq2d 5934 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = (𝑇 ↾ ∅))
146145, 8eqtrdi 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑇 ↾ ({𝑞} ∖ {𝑃})) = ∅)
147146oveq2d 7369 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝐺 DProd ∅))
14851ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd ∅) = {(0g𝐺)})
149147, 148eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = {(0g𝐺)})
150149fveq2d 6830 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘{(0g𝐺)}))
151150, 55eqtrdi 2780 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = 1)
152151breq2d 5107 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ 1))
153139, 152mtbird 325 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞 = 𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
154 ablfac1.1 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ⊆ ℙ)
155154adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐴 ⊆ ℙ)
15669unssbd 4147 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → {𝑞} ⊆ 𝐴)
157 vex 3442 . . . . . . . . . . . . . . . . . . . . . 22 𝑞 ∈ V
158157snss 4739 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝐴 ↔ {𝑞} ⊆ 𝐴)
159156, 158sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞𝐴)
160155, 159sseldd 3938 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝑞 ∈ ℙ)
161 ablfac1eu.3 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐴) → 𝐶 ∈ ℕ0)
162159, 161syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → 𝐶 ∈ ℕ0)
163 prmdvdsexpr 16646 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝐶 ∈ ℕ0) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
164123, 160, 162, 163syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑃 = 𝑞))
165 eqcom 2736 . . . . . . . . . . . . . . . . . 18 (𝑃 = 𝑞𝑞 = 𝑃)
166164, 165imbitrdi 251 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (𝑞𝐶) → 𝑞 = 𝑃))
167166necon3ad 2938 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑞𝑃 → ¬ 𝑃 ∥ (𝑞𝐶)))
168167imp 406 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (𝑞𝐶))
169 disjsn2 4666 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝑃 → ({𝑞} ∩ {𝑃}) = ∅)
170169adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ({𝑞} ∩ {𝑃}) = ∅)
171 disj3 4407 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑞} ∩ {𝑃}) = ∅ ↔ {𝑞} = ({𝑞} ∖ {𝑃}))
172170, 171sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → {𝑞} = ({𝑞} ∖ {𝑃}))
173172reseq2d 5934 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑇 ↾ {𝑞}) = (𝑇 ↾ ({𝑞} ∖ {𝑃})))
174173oveq2d 7369 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))
17565ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝐺dom DProd 𝑇)
17666ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → dom 𝑇 = 𝐴)
177159adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → 𝑞𝐴)
178175, 176, 177dpjlem 19950 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ {𝑞})) = (𝑇𝑞))
179174, 178eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))) = (𝑇𝑞))
180179fveq2d 6830 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (♯‘(𝑇𝑞)))
181 ablfac1eu.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐴) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
182159, 181syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
183182adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝑇𝑞)) = (𝑞𝐶))
184180, 183eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) = (𝑞𝐶))
185184breq2d 5107 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) ↔ 𝑃 ∥ (𝑞𝐶)))
186168, 185mtbird 325 . . . . . . . . . . . . . 14 (((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) ∧ 𝑞𝑃) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
187153, 186pm2.61dane 3012 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))))
188 orel2 890 . . . . . . . . . . . . 13 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃})))) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
189187, 188syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → ((𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) ∨ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ({𝑞} ∖ {𝑃}))))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
190138, 189sylbid 240 . . . . . . . . . . 11 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))) → 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))))
191190con3d 152 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑞𝑧 ∧ (𝑧 ∪ {𝑞}) ⊆ 𝐴)) → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))
192191expr 456 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → (¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))) → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
193192a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑞𝑧) → (((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
19463, 193syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑞𝑧) → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃})))))))
195194expcom 413 . . . . . 6 𝑞𝑧 → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
196195adantl 481 . . . . 5 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → (𝜑 → ((𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃}))))) → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
197196a2d 29 . . . 4 ((𝑧 ∈ Fin ∧ ¬ 𝑞𝑧) → ((𝜑 → (𝑧𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝑧 ∖ {𝑃})))))) → (𝜑 → ((𝑧 ∪ {𝑞}) ⊆ 𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ ((𝑧 ∪ {𝑞}) ∖ {𝑃}))))))))
19815, 24, 33, 42, 59, 197findcard2s 9089 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))))
1992, 198mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃}))))))
2001, 199mpi 20 1 (𝜑 → ¬ 𝑃 ∥ (♯‘(𝐺 DProd (𝑇 ↾ (𝐴 ∖ {𝑃})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  1c1 11029   · cmul 11033  0cn0 12402  cz 12489  cexp 13986  chash 14255  cdvds 16181  cprime 16600   pCnt cpc 16766  Basecbs 17138  0gc0g 17361  Grpcgrp 18830  SubGrpcsubg 19017  Cntzccntz 19212  odcod 19421  LSSumclsm 19531  Abelcabl 19678   DProd cdprd 19892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-gim 19156  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-pj1 19534  df-cmn 19679  df-abl 19680  df-dprd 19894
This theorem is referenced by:  ablfac1eu  19972
  Copyright terms: Public domain W3C validator