Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemgun Structured version   Visualization version   GIF version

Theorem ballotlemgun 33181
Description: A property of the defined operator. (Contributed by Thierry Arnoux, 26-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
ballotlemgun.1 (𝜑𝑈 ∈ Fin)
ballotlemgun.2 (𝜑𝑉 ∈ Fin)
ballotlemgun.3 (𝜑𝑊 ∈ Fin)
ballotlemgun.4 (𝜑 → (𝑉𝑊) = ∅)
Assertion
Ref Expression
ballotlemgun (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐼   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑢,𝑈,𝑣   𝑢,𝑉,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝑈(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)   𝑉(𝑥,𝑖,𝑘,𝑐)   𝑊(𝑥,𝑖,𝑘,𝑐)

Proof of Theorem ballotlemgun
StepHypRef Expression
1 indir 4236 . . . . . 6 ((𝑉𝑊) ∩ 𝑈) = ((𝑉𝑈) ∪ (𝑊𝑈))
21fveq2i 6846 . . . . 5 (♯‘((𝑉𝑊) ∩ 𝑈)) = (♯‘((𝑉𝑈) ∪ (𝑊𝑈)))
3 ballotlemgun.2 . . . . . . 7 (𝜑𝑉 ∈ Fin)
4 infi 9215 . . . . . . 7 (𝑉 ∈ Fin → (𝑉𝑈) ∈ Fin)
53, 4syl 17 . . . . . 6 (𝜑 → (𝑉𝑈) ∈ Fin)
6 ballotlemgun.3 . . . . . . 7 (𝜑𝑊 ∈ Fin)
7 infi 9215 . . . . . . 7 (𝑊 ∈ Fin → (𝑊𝑈) ∈ Fin)
86, 7syl 17 . . . . . 6 (𝜑 → (𝑊𝑈) ∈ Fin)
9 ballotlemgun.4 . . . . . . . 8 (𝜑 → (𝑉𝑊) = ∅)
109ineq1d 4172 . . . . . . 7 (𝜑 → ((𝑉𝑊) ∩ 𝑈) = (∅ ∩ 𝑈))
11 inindir 4188 . . . . . . 7 ((𝑉𝑊) ∩ 𝑈) = ((𝑉𝑈) ∩ (𝑊𝑈))
12 0in 4354 . . . . . . 7 (∅ ∩ 𝑈) = ∅
1310, 11, 123eqtr3g 2796 . . . . . 6 (𝜑 → ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅)
14 hashun 14288 . . . . . 6 (((𝑉𝑈) ∈ Fin ∧ (𝑊𝑈) ∈ Fin ∧ ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅) → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
155, 8, 13, 14syl3anc 1372 . . . . 5 (𝜑 → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
162, 15eqtrid 2785 . . . 4 (𝜑 → (♯‘((𝑉𝑊) ∩ 𝑈)) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
17 difundir 4241 . . . . . 6 ((𝑉𝑊) ∖ 𝑈) = ((𝑉𝑈) ∪ (𝑊𝑈))
1817fveq2i 6846 . . . . 5 (♯‘((𝑉𝑊) ∖ 𝑈)) = (♯‘((𝑉𝑈) ∪ (𝑊𝑈)))
19 diffi 9126 . . . . . . 7 (𝑉 ∈ Fin → (𝑉𝑈) ∈ Fin)
203, 19syl 17 . . . . . 6 (𝜑 → (𝑉𝑈) ∈ Fin)
21 diffi 9126 . . . . . . 7 (𝑊 ∈ Fin → (𝑊𝑈) ∈ Fin)
226, 21syl 17 . . . . . 6 (𝜑 → (𝑊𝑈) ∈ Fin)
239difeq1d 4082 . . . . . . 7 (𝜑 → ((𝑉𝑊) ∖ 𝑈) = (∅ ∖ 𝑈))
24 difindir 4243 . . . . . . 7 ((𝑉𝑊) ∖ 𝑈) = ((𝑉𝑈) ∩ (𝑊𝑈))
25 0dif 4362 . . . . . . 7 (∅ ∖ 𝑈) = ∅
2623, 24, 253eqtr3g 2796 . . . . . 6 (𝜑 → ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅)
27 hashun 14288 . . . . . 6 (((𝑉𝑈) ∈ Fin ∧ (𝑊𝑈) ∈ Fin ∧ ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅) → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
2820, 22, 26, 27syl3anc 1372 . . . . 5 (𝜑 → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
2918, 28eqtrid 2785 . . . 4 (𝜑 → (♯‘((𝑉𝑊) ∖ 𝑈)) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
3016, 29oveq12d 7376 . . 3 (𝜑 → ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))) = (((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))) − ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈)))))
31 hashcl 14262 . . . . . 6 ((𝑉𝑈) ∈ Fin → (♯‘(𝑉𝑈)) ∈ ℕ0)
323, 4, 313syl 18 . . . . 5 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℕ0)
3332nn0cnd 12480 . . . 4 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℂ)
34 hashcl 14262 . . . . . 6 ((𝑊𝑈) ∈ Fin → (♯‘(𝑊𝑈)) ∈ ℕ0)
356, 7, 343syl 18 . . . . 5 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℕ0)
3635nn0cnd 12480 . . . 4 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℂ)
37 hashcl 14262 . . . . . 6 ((𝑉𝑈) ∈ Fin → (♯‘(𝑉𝑈)) ∈ ℕ0)
383, 19, 373syl 18 . . . . 5 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℕ0)
3938nn0cnd 12480 . . . 4 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℂ)
40 hashcl 14262 . . . . . 6 ((𝑊𝑈) ∈ Fin → (♯‘(𝑊𝑈)) ∈ ℕ0)
416, 21, 403syl 18 . . . . 5 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℕ0)
4241nn0cnd 12480 . . . 4 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℂ)
4333, 36, 39, 42addsub4d 11564 . . 3 (𝜑 → (((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))) − ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈)))) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
4430, 43eqtrd 2773 . 2 (𝜑 → ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
45 ballotlemgun.1 . . 3 (𝜑𝑈 ∈ Fin)
46 unfi 9119 . . . 4 ((𝑉 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑉𝑊) ∈ Fin)
473, 6, 46syl2anc 585 . . 3 (𝜑 → (𝑉𝑊) ∈ Fin)
48 ballotth.m . . . 4 𝑀 ∈ ℕ
49 ballotth.n . . . 4 𝑁 ∈ ℕ
50 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
51 ballotth.p . . . 4 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
52 ballotth.f . . . 4 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
53 ballotth.e . . . 4 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
54 ballotth.mgtn . . . 4 𝑁 < 𝑀
55 ballotth.i . . . 4 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
56 ballotth.s . . . 4 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
57 ballotth.r . . . 4 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
58 ballotlemg . . . 4 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
5948, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 33180 . . 3 ((𝑈 ∈ Fin ∧ (𝑉𝑊) ∈ Fin) → (𝑈 (𝑉𝑊)) = ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))))
6045, 47, 59syl2anc 585 . 2 (𝜑 → (𝑈 (𝑉𝑊)) = ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))))
6148, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 33180 . . . 4 ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
6245, 3, 61syl2anc 585 . . 3 (𝜑 → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
6348, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 33180 . . . 4 ((𝑈 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑈 𝑊) = ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈))))
6445, 6, 63syl2anc 585 . . 3 (𝜑 → (𝑈 𝑊) = ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈))))
6562, 64oveq12d 7376 . 2 (𝜑 → ((𝑈 𝑉) + (𝑈 𝑊)) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
6644, 60, 653eqtr4d 2783 1 (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wral 3061  {crab 3406  cdif 3908  cun 3909  cin 3910  c0 4283  ifcif 4487  𝒫 cpw 4561   class class class wbr 5106  cmpt 5189  cima 5637  cfv 6497  (class class class)co 7358  cmpo 7360  Fincfn 8886  infcinf 9382  cr 11055  0cc0 11056  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cmin 11390   / cdiv 11817  cn 12158  0cn0 12418  cz 12504  ...cfz 13430  chash 14236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-oadd 8417  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-dju 9842  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-hash 14237
This theorem is referenced by:  ballotlemfrceq  33185
  Copyright terms: Public domain W3C validator