Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemgun Structured version   Visualization version   GIF version

Theorem ballotlemgun 34516
Description: A property of the defined operator. (Contributed by Thierry Arnoux, 26-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
ballotlemgun.1 (𝜑𝑈 ∈ Fin)
ballotlemgun.2 (𝜑𝑉 ∈ Fin)
ballotlemgun.3 (𝜑𝑊 ∈ Fin)
ballotlemgun.4 (𝜑 → (𝑉𝑊) = ∅)
Assertion
Ref Expression
ballotlemgun (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝑖,𝐸,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐼   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑢,𝑈,𝑣   𝑢,𝑉,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝑈(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)   𝑉(𝑥,𝑖,𝑘,𝑐)   𝑊(𝑥,𝑖,𝑘,𝑐)

Proof of Theorem ballotlemgun
StepHypRef Expression
1 indir 4249 . . . . . 6 ((𝑉𝑊) ∩ 𝑈) = ((𝑉𝑈) ∪ (𝑊𝑈))
21fveq2i 6861 . . . . 5 (♯‘((𝑉𝑊) ∩ 𝑈)) = (♯‘((𝑉𝑈) ∪ (𝑊𝑈)))
3 ballotlemgun.2 . . . . . . 7 (𝜑𝑉 ∈ Fin)
4 infi 9213 . . . . . . 7 (𝑉 ∈ Fin → (𝑉𝑈) ∈ Fin)
53, 4syl 17 . . . . . 6 (𝜑 → (𝑉𝑈) ∈ Fin)
6 ballotlemgun.3 . . . . . . 7 (𝜑𝑊 ∈ Fin)
7 infi 9213 . . . . . . 7 (𝑊 ∈ Fin → (𝑊𝑈) ∈ Fin)
86, 7syl 17 . . . . . 6 (𝜑 → (𝑊𝑈) ∈ Fin)
9 ballotlemgun.4 . . . . . . . 8 (𝜑 → (𝑉𝑊) = ∅)
109ineq1d 4182 . . . . . . 7 (𝜑 → ((𝑉𝑊) ∩ 𝑈) = (∅ ∩ 𝑈))
11 inindir 4199 . . . . . . 7 ((𝑉𝑊) ∩ 𝑈) = ((𝑉𝑈) ∩ (𝑊𝑈))
12 0in 4360 . . . . . . 7 (∅ ∩ 𝑈) = ∅
1310, 11, 123eqtr3g 2787 . . . . . 6 (𝜑 → ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅)
14 hashun 14347 . . . . . 6 (((𝑉𝑈) ∈ Fin ∧ (𝑊𝑈) ∈ Fin ∧ ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅) → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
155, 8, 13, 14syl3anc 1373 . . . . 5 (𝜑 → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
162, 15eqtrid 2776 . . . 4 (𝜑 → (♯‘((𝑉𝑊) ∩ 𝑈)) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
17 difundir 4254 . . . . . 6 ((𝑉𝑊) ∖ 𝑈) = ((𝑉𝑈) ∪ (𝑊𝑈))
1817fveq2i 6861 . . . . 5 (♯‘((𝑉𝑊) ∖ 𝑈)) = (♯‘((𝑉𝑈) ∪ (𝑊𝑈)))
19 diffi 9139 . . . . . . 7 (𝑉 ∈ Fin → (𝑉𝑈) ∈ Fin)
203, 19syl 17 . . . . . 6 (𝜑 → (𝑉𝑈) ∈ Fin)
21 diffi 9139 . . . . . . 7 (𝑊 ∈ Fin → (𝑊𝑈) ∈ Fin)
226, 21syl 17 . . . . . 6 (𝜑 → (𝑊𝑈) ∈ Fin)
239difeq1d 4088 . . . . . . 7 (𝜑 → ((𝑉𝑊) ∖ 𝑈) = (∅ ∖ 𝑈))
24 difindir 4256 . . . . . . 7 ((𝑉𝑊) ∖ 𝑈) = ((𝑉𝑈) ∩ (𝑊𝑈))
25 0dif 4368 . . . . . . 7 (∅ ∖ 𝑈) = ∅
2623, 24, 253eqtr3g 2787 . . . . . 6 (𝜑 → ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅)
27 hashun 14347 . . . . . 6 (((𝑉𝑈) ∈ Fin ∧ (𝑊𝑈) ∈ Fin ∧ ((𝑉𝑈) ∩ (𝑊𝑈)) = ∅) → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
2820, 22, 26, 27syl3anc 1373 . . . . 5 (𝜑 → (♯‘((𝑉𝑈) ∪ (𝑊𝑈))) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
2918, 28eqtrid 2776 . . . 4 (𝜑 → (♯‘((𝑉𝑊) ∖ 𝑈)) = ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))))
3016, 29oveq12d 7405 . . 3 (𝜑 → ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))) = (((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))) − ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈)))))
31 hashcl 14321 . . . . . 6 ((𝑉𝑈) ∈ Fin → (♯‘(𝑉𝑈)) ∈ ℕ0)
323, 4, 313syl 18 . . . . 5 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℕ0)
3332nn0cnd 12505 . . . 4 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℂ)
34 hashcl 14321 . . . . . 6 ((𝑊𝑈) ∈ Fin → (♯‘(𝑊𝑈)) ∈ ℕ0)
356, 7, 343syl 18 . . . . 5 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℕ0)
3635nn0cnd 12505 . . . 4 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℂ)
37 hashcl 14321 . . . . . 6 ((𝑉𝑈) ∈ Fin → (♯‘(𝑉𝑈)) ∈ ℕ0)
383, 19, 373syl 18 . . . . 5 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℕ0)
3938nn0cnd 12505 . . . 4 (𝜑 → (♯‘(𝑉𝑈)) ∈ ℂ)
40 hashcl 14321 . . . . . 6 ((𝑊𝑈) ∈ Fin → (♯‘(𝑊𝑈)) ∈ ℕ0)
416, 21, 403syl 18 . . . . 5 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℕ0)
4241nn0cnd 12505 . . . 4 (𝜑 → (♯‘(𝑊𝑈)) ∈ ℂ)
4333, 36, 39, 42addsub4d 11580 . . 3 (𝜑 → (((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈))) − ((♯‘(𝑉𝑈)) + (♯‘(𝑊𝑈)))) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
4430, 43eqtrd 2764 . 2 (𝜑 → ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
45 ballotlemgun.1 . . 3 (𝜑𝑈 ∈ Fin)
46 unfi 9135 . . . 4 ((𝑉 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑉𝑊) ∈ Fin)
473, 6, 46syl2anc 584 . . 3 (𝜑 → (𝑉𝑊) ∈ Fin)
48 ballotth.m . . . 4 𝑀 ∈ ℕ
49 ballotth.n . . . 4 𝑁 ∈ ℕ
50 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
51 ballotth.p . . . 4 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
52 ballotth.f . . . 4 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
53 ballotth.e . . . 4 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
54 ballotth.mgtn . . . 4 𝑁 < 𝑀
55 ballotth.i . . . 4 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
56 ballotth.s . . . 4 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
57 ballotth.r . . . 4 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
58 ballotlemg . . . 4 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
5948, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 34515 . . 3 ((𝑈 ∈ Fin ∧ (𝑉𝑊) ∈ Fin) → (𝑈 (𝑉𝑊)) = ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))))
6045, 47, 59syl2anc 584 . 2 (𝜑 → (𝑈 (𝑉𝑊)) = ((♯‘((𝑉𝑊) ∩ 𝑈)) − (♯‘((𝑉𝑊) ∖ 𝑈))))
6148, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 34515 . . . 4 ((𝑈 ∈ Fin ∧ 𝑉 ∈ Fin) → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
6245, 3, 61syl2anc 584 . . 3 (𝜑 → (𝑈 𝑉) = ((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))))
6348, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58ballotlemgval 34515 . . . 4 ((𝑈 ∈ Fin ∧ 𝑊 ∈ Fin) → (𝑈 𝑊) = ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈))))
6445, 6, 63syl2anc 584 . . 3 (𝜑 → (𝑈 𝑊) = ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈))))
6562, 64oveq12d 7405 . 2 (𝜑 → ((𝑈 𝑉) + (𝑈 𝑊)) = (((♯‘(𝑉𝑈)) − (♯‘(𝑉𝑈))) + ((♯‘(𝑊𝑈)) − (♯‘(𝑊𝑈)))))
6644, 60, 653eqtr4d 2774 1 (𝜑 → (𝑈 (𝑉𝑊)) = ((𝑈 𝑉) + (𝑈 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cdif 3911  cun 3912  cin 3913  c0 4296  ifcif 4488  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-hash 14296
This theorem is referenced by:  ballotlemfrceq  34520
  Copyright terms: Public domain W3C validator