MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdif Structured version   Visualization version   GIF version

Theorem invdif 4242
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)

Proof of Theorem invdif
StepHypRef Expression
1 dfin2 4234 . 2 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵)))
2 ddif 4104 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
32difeq2i 4086 . 2 (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴𝐵)
41, 3eqtri 2752 1 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  cdif 3911  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-in 3921
This theorem is referenced by:  indif2  4244  difundi  4253  difundir  4254  difindi  4255  difindir  4256  difdif2  4259  difun1  4262  undif1  4439  difdifdir  4455  fsuppeq  8154  fsuppeqg  8155  dfsup2  9395  fsets  17139  setsdm  17140  dmxrncnvep  38362
  Copyright terms: Public domain W3C validator