MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdif Structured version   Visualization version   GIF version

Theorem invdif 4232
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)

Proof of Theorem invdif
StepHypRef Expression
1 dfin2 4224 . 2 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵)))
2 ddif 4094 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
32difeq2i 4076 . 2 (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴𝐵)
41, 3eqtri 2752 1 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3438  cdif 3902  cin 3904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-in 3912
This theorem is referenced by:  indif2  4234  difundi  4243  difundir  4244  difindi  4245  difindir  4246  difdif2  4249  difun1  4252  undif1  4429  difdifdir  4445  fsuppeq  8115  fsuppeqg  8116  dfsup2  9353  fsets  17098  setsdm  17099  dmxrncnvep  38350
  Copyright terms: Public domain W3C validator