Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invdif | Structured version Visualization version GIF version |
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
invdif | ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin2 4191 | . 2 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵))) | |
2 | ddif 4067 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
3 | 2 | difeq2i 4050 | . 2 ⊢ (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴 ∖ 𝐵) |
4 | 1, 3 | eqtri 2766 | 1 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 |
This theorem is referenced by: indif2 4201 difundi 4210 difundir 4211 difindi 4212 difindir 4213 difdif2 4217 difun1 4220 undif1 4406 difdifdir 4419 frnsuppeq 7962 frnsuppeqg 7963 dfsup2 9133 fsets 16798 setsdm 16799 |
Copyright terms: Public domain | W3C validator |