Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invdif | Structured version Visualization version GIF version |
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
invdif | ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin2 4175 | . 2 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵))) | |
2 | ddif 4051 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
3 | 2 | difeq2i 4034 | . 2 ⊢ (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴 ∖ 𝐵) |
4 | 1, 3 | eqtri 2765 | 1 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 Vcvv 3408 ∖ cdif 3863 ∩ cin 3865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-in 3873 |
This theorem is referenced by: indif2 4185 difundi 4194 difundir 4195 difindi 4196 difindir 4197 difdif2 4201 difun1 4204 undif1 4390 difdifdir 4403 frnsuppeq 7917 frnsuppeqg 7918 dfsup2 9060 fsets 16722 setsdm 16723 |
Copyright terms: Public domain | W3C validator |