MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdif Structured version   Visualization version   GIF version

Theorem invdif 4224
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
invdif (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)

Proof of Theorem invdif
StepHypRef Expression
1 dfin2 4216 . 2 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵)))
2 ddif 4086 . . 3 (V ∖ (V ∖ 𝐵)) = 𝐵
32difeq2i 4068 . 2 (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴𝐵)
41, 3eqtri 2754 1 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904
This theorem is referenced by:  indif2  4226  difundi  4235  difundir  4236  difindi  4237  difindir  4238  difdif2  4241  difun1  4244  undif1  4421  difdifdir  4437  fsuppeq  8100  fsuppeqg  8101  dfsup2  9323  fsets  17075  setsdm  17076  dmxrncnvep  38408
  Copyright terms: Public domain W3C validator