| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invdif | Structured version Visualization version GIF version | ||
| Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| invdif | ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin2 4237 | . 2 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵))) | |
| 2 | ddif 4107 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
| 3 | 2 | difeq2i 4089 | . 2 ⊢ (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴 ∖ 𝐵) |
| 4 | 1, 3 | eqtri 2753 | 1 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∖ cdif 3914 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 |
| This theorem is referenced by: indif2 4247 difundi 4256 difundir 4257 difindi 4258 difindir 4259 difdif2 4262 difun1 4265 undif1 4442 difdifdir 4458 fsuppeq 8157 fsuppeqg 8158 dfsup2 9402 fsets 17146 setsdm 17147 dmxrncnvep 38369 |
| Copyright terms: Public domain | W3C validator |