| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invdif | Structured version Visualization version GIF version | ||
| Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| invdif | ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin2 4216 | . 2 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵))) | |
| 2 | ddif 4086 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
| 3 | 2 | difeq2i 4068 | . 2 ⊢ (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴 ∖ 𝐵) |
| 4 | 1, 3 | eqtri 2754 | 1 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 |
| This theorem is referenced by: indif2 4226 difundi 4235 difundir 4236 difindi 4237 difindir 4238 difdif2 4241 difun1 4244 undif1 4421 difdifdir 4437 fsuppeq 8100 fsuppeqg 8101 dfsup2 9323 fsets 17075 setsdm 17076 dmxrncnvep 38408 |
| Copyright terms: Public domain | W3C validator |