![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invdif | Structured version Visualization version GIF version |
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
invdif | ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin2 4290 | . 2 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ (V ∖ 𝐵))) | |
2 | ddif 4164 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
3 | 2 | difeq2i 4146 | . 2 ⊢ (𝐴 ∖ (V ∖ (V ∖ 𝐵))) = (𝐴 ∖ 𝐵) |
4 | 1, 3 | eqtri 2768 | 1 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∖ cdif 3973 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 |
This theorem is referenced by: indif2 4300 difundi 4309 difundir 4310 difindi 4311 difindir 4312 difdif2 4315 difun1 4318 undif1 4499 difdifdir 4515 fsuppeq 8216 fsuppeqg 8217 dfsup2 9513 fsets 17216 setsdm 17217 |
Copyright terms: Public domain | W3C validator |