MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difss2 Structured version   Visualization version   GIF version

Theorem difss2 4087
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difss2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)

Proof of Theorem difss2
StepHypRef Expression
1 id 22 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶))
2 difss 4085 . 2 (𝐵𝐶) ⊆ 𝐵
31, 2sstrdi 3943 1 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3895  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-ss 3915
This theorem is referenced by:  difss2d  4088  ssdifsn  4741  sbthlem1  9011  bcthlem2  25272  ismblfin  37774
  Copyright terms: Public domain W3C validator