MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difss2 Structured version   Visualization version   GIF version

Theorem difss2 4130
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difss2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)

Proof of Theorem difss2
StepHypRef Expression
1 id 22 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶))
2 difss 4128 . 2 (𝐵𝐶) ⊆ 𝐵
31, 2sstrdi 3989 1 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3941  wss 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947  df-ss 3961
This theorem is referenced by:  difss2d  4131  ssdifsn  4793  sbthlem1  9111  bcthlem2  25302  ismblfin  37267  uspgrimprop  47359
  Copyright terms: Public domain W3C validator