MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difss2 Structured version   Visualization version   GIF version

Theorem difss2 4064
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difss2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)

Proof of Theorem difss2
StepHypRef Expression
1 id 22 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶))
2 difss 4062 . 2 (𝐵𝐶) ⊆ 𝐵
31, 2sstrdi 3929 1 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3880  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900
This theorem is referenced by:  difss2d  4065  ssdifsn  4718  sbthlem1  8823  bcthlem2  24394  ismblfin  35745
  Copyright terms: Public domain W3C validator