Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difss2 | Structured version Visualization version GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss 4022 | . 2 ⊢ (𝐵 ∖ 𝐶) ⊆ 𝐵 | |
3 | 1, 2 | sstrdi 3889 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3840 ⊆ wss 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-dif 3846 df-in 3850 df-ss 3860 |
This theorem is referenced by: difss2d 4025 ssdifsn 4676 sbthlem1 8679 bcthlem2 24079 ismblfin 35463 |
Copyright terms: Public domain | W3C validator |