MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difss2 Structured version   Visualization version   GIF version

Theorem difss2 4024
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difss2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)

Proof of Theorem difss2
StepHypRef Expression
1 id 22 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶))
2 difss 4022 . 2 (𝐵𝐶) ⊆ 𝐵
31, 2sstrdi 3889 1 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3840  wss 3843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-dif 3846  df-in 3850  df-ss 3860
This theorem is referenced by:  difss2d  4025  ssdifsn  4676  sbthlem1  8679  bcthlem2  24079  ismblfin  35463
  Copyright terms: Public domain W3C validator