![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difss2 | Structured version Visualization version GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss 4131 | . 2 ⊢ (𝐵 ∖ 𝐶) ⊆ 𝐵 | |
3 | 1, 2 | sstrdi 3994 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3945 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 |
This theorem is referenced by: difss2d 4134 ssdifsn 4791 sbthlem1 9086 bcthlem2 25074 ismblfin 36833 |
Copyright terms: Public domain | W3C validator |