![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifsn | Structured version Visualization version GIF version |
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.) |
Ref | Expression |
---|---|
ssdifsn | ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2 4133 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) → 𝐴 ⊆ 𝐵) | |
2 | reldisj 4456 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐴 ∩ {𝐶}) = ∅ ↔ 𝐴 ⊆ (𝐵 ∖ {𝐶}))) | |
3 | 2 | bicomd 222 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∩ {𝐶}) = ∅)) |
4 | 1, 3 | biadanii 820 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅)) |
5 | disjsn 4720 | . . 3 ⊢ ((𝐴 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐴) | |
6 | 5 | anbi2i 621 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
7 | 4, 6 | bitri 274 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 {csn 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-v 3464 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4326 df-sn 4634 |
This theorem is referenced by: naddcllem 8706 isdomn6 20692 imadrhmcl 20776 isdrng4 33147 drngmxidl 33352 logdivsqrle 34496 elsetrecslem 48445 |
Copyright terms: Public domain | W3C validator |