![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifsn | Structured version Visualization version GIF version |
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.) |
Ref | Expression |
---|---|
ssdifsn | ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2 4147 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) → 𝐴 ⊆ 𝐵) | |
2 | reldisj 4458 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐴 ∩ {𝐶}) = ∅ ↔ 𝐴 ⊆ (𝐵 ∖ {𝐶}))) | |
3 | 2 | bicomd 223 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∩ {𝐶}) = ∅)) |
4 | 1, 3 | biadanii 822 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅)) |
5 | disjsn 4715 | . . 3 ⊢ ((𝐴 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ 𝐴) | |
6 | 5 | anbi2i 623 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
7 | 4, 6 | bitri 275 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-v 3479 df-dif 3965 df-in 3969 df-ss 3979 df-nul 4339 df-sn 4631 |
This theorem is referenced by: naddcllem 8712 isdomn6 20730 imadrhmcl 20814 isdrng4 33278 drngmxidl 33484 assafld 33664 logdivsqrle 34643 elsetrecslem 48929 |
Copyright terms: Public domain | W3C validator |