MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifsn Structured version   Visualization version   GIF version

Theorem ssdifsn 4723
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
Assertion
Ref Expression
ssdifsn (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))

Proof of Theorem ssdifsn
StepHypRef Expression
1 difss2 4069 . . 3 (𝐴 ⊆ (𝐵 ∖ {𝐶}) → 𝐴𝐵)
2 reldisj 4387 . . . 4 (𝐴𝐵 → ((𝐴 ∩ {𝐶}) = ∅ ↔ 𝐴 ⊆ (𝐵 ∖ {𝐶})))
32bicomd 222 . . 3 (𝐴𝐵 → (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∩ {𝐶}) = ∅))
41, 3biadanii 819 . 2 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅))
5 disjsn 4649 . . 3 ((𝐴 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶𝐴)
65anbi2i 623 . 2 ((𝐴𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
74, 6bitri 274 1 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2106  cdif 3885  cin 3887  wss 3888  c0 4258  {csn 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3433  df-dif 3891  df-in 3895  df-ss 3905  df-nul 4259  df-sn 4564
This theorem is referenced by:  logdivsqrle  32627  naddcllem  33828  elsetrecslem  46371
  Copyright terms: Public domain W3C validator