MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifsn Structured version   Visualization version   GIF version

Theorem ssdifsn 4755
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
Assertion
Ref Expression
ssdifsn (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))

Proof of Theorem ssdifsn
StepHypRef Expression
1 difss2 4104 . . 3 (𝐴 ⊆ (𝐵 ∖ {𝐶}) → 𝐴𝐵)
2 reldisj 4419 . . . 4 (𝐴𝐵 → ((𝐴 ∩ {𝐶}) = ∅ ↔ 𝐴 ⊆ (𝐵 ∖ {𝐶})))
32bicomd 223 . . 3 (𝐴𝐵 → (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∩ {𝐶}) = ∅))
41, 3biadanii 821 . 2 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅))
5 disjsn 4678 . . 3 ((𝐴 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶𝐴)
65anbi2i 623 . 2 ((𝐴𝐵 ∧ (𝐴 ∩ {𝐶}) = ∅) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
74, 6bitri 275 1 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  cin 3916  wss 3917  c0 4299  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593
This theorem is referenced by:  naddcllem  8643  isdomn6  20630  imadrhmcl  20713  isdrng4  33252  drngmxidl  33455  assafld  33640  logdivsqrle  34648  elsetrecslem  49692
  Copyright terms: Public domain W3C validator