| Step | Hyp | Ref
| Expression |
| 1 | | mblfinlem4 37667 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (vol*‘𝐴)
= sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) |
| 2 | | elpwi 4607 |
. . . . 5
⊢ (𝑤 ∈ 𝒫 ℝ →
𝑤 ⊆
ℝ) |
| 3 | | elmapi 8889 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
| 4 | | inss1 4237 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∩ 𝐴) ⊆ 𝑤 |
| 5 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∩ 𝐴) ⊆ 𝑤 ∧ 𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) →
(vol*‘(𝑤 ∩ 𝐴)) ∈
ℝ) |
| 6 | 4, 5 | mp3an1 1450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ∈ ℝ) |
| 7 | | difss 4136 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∖ 𝐴) ⊆ 𝑤 |
| 8 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∖ 𝐴) ⊆ 𝑤 ∧ 𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) →
(vol*‘(𝑤 ∖
𝐴)) ∈
ℝ) |
| 9 | 7, 8 | mp3an1 1450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ∈ ℝ) |
| 10 | 6, 9 | readdcld 11290 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ) |
| 11 | 10 | rexrd 11311 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
| 12 | 11 | ad3antlr 731 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
| 13 | | rncoss 5986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ran ((,)
∘ 𝑓) ⊆ ran
(,) |
| 14 | 13 | unissi 4916 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
(,) |
| 15 | | unirnioo 13489 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ =
∪ ran (,) |
| 16 | 14, 15 | sseqtrri 4033 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ |
| 17 | | ovolcl 25513 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
| 18 | 16, 17 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
| 19 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((abs
∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) |
| 20 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
| 21 | 19, 20 | ovolsf 25507 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑓)):ℕ⟶(0[,)+∞)) |
| 22 | | frn 6743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞)) |
| 23 | | icossxr 13472 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0[,)+∞) ⊆ ℝ* |
| 24 | 22, 23 | sstrdi 3996 |
. . . . . . . . . . . . . . . . . 18
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆
ℝ*) |
| 25 | | supxrcl 13357 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ*) |
| 26 | 21, 24, 25 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
| 27 | 26 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
| 28 | | pnfge 13172 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((vol*‘(𝑤
∩ 𝐴)) +
(vol*‘(𝑤 ∖
𝐴))) ∈
ℝ* → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
| 29 | 11, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
| 31 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) |
| 32 | 30, 31 | breqtrrd 5171 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 33 | 32 | adantlll 718 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 34 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ* |
| 35 | | nltpnft 13206 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
→ ((vol*‘∪ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞)) |
| 36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞) |
| 37 | 36 | necon2abii 2991 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) < +∞ ↔
(vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞) |
| 38 | | ovolge0 25516 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
| 39 | 16, 38 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) |
| 40 | | 0re 11263 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ |
| 41 | | xrre3 13213 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
∧ 0 ∈ ℝ) ∧ (0 ≤ (vol*‘∪
ran ((,) ∘ 𝑓)) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 42 | 34, 40, 41 | mpanl12 702 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) < +∞) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 43 | 39, 42 | mpan 690 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) < +∞ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 44 | 37, 43 | sylbir 235 |
. . . . . . . . . . . . . . . . . . 19
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 45 | 10 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ) |
| 46 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 = (vol‘𝑎)) |
| 47 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑎 → (𝑏 ∈ dom vol ↔ 𝑎 ∈ dom vol)) |
| 48 | | uniretop 24783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 49 | 48 | cldss 23037 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ) |
| 50 | | dfss4 4269 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ⊆ ℝ ↔ (ℝ
∖ (ℝ ∖ 𝑏)) = 𝑏) |
| 51 | 49, 50 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) = 𝑏) |
| 52 | | rembl 25575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ℝ
∈ dom vol |
| 53 | 48 | cldopn 23039 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran
(,))) |
| 54 | | opnmbl 25637 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℝ
∖ 𝑏) ∈
(topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol) |
| 56 | | difmbl 25578 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℝ
∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖
(ℝ ∖ 𝑏)) ∈
dom vol) |
| 57 | 52, 55, 56 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) ∈ dom
vol) |
| 58 | 51, 57 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol) |
| 59 | 47, 58 | vtoclga 3577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) → 𝑎 ∈ dom vol) |
| 60 | | mblvol 25565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈ dom vol →
(vol‘𝑎) =
(vol*‘𝑎)) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑎) = (vol*‘𝑎)) |
| 62 | 46, 61 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑧 = (vol*‘𝑎)) |
| 63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 = (vol*‘𝑎)) |
| 64 | | inss1 4237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 65 | | sstr 3992 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑓)) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 66 | 64, 65 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 67 | 66 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 68 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑎) ∈
ℝ) |
| 69 | 16, 68 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈
ℝ) |
| 70 | 69 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘𝑎) ∈ ℝ) |
| 71 | 67, 70 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → (vol*‘𝑎) ∈ ℝ) |
| 72 | 63, 71 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 ∈ ℝ) |
| 73 | 72 | rexlimdvaa 3156 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 ∈ ℝ)) |
| 74 | 73 | abssdv 4068 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ) |
| 75 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑦 → (𝑧 = (vol‘𝑎) ↔ 𝑦 = (vol‘𝑎))) |
| 76 | 75 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑦 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)))) |
| 77 | 76 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑦 → (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)))) |
| 78 | 77 | ralab 3697 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑦 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 79 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 = (vol‘𝑎)) |
| 80 | 79, 61 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 = (vol*‘𝑎)) |
| 81 | | ovolss 25520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
→ (vol*‘𝑎) ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
| 82 | 66, 16, 81 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → (vol*‘𝑎) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 83 | 82 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → (vol*‘𝑎) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 84 | 80, 83 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 85 | 84 | rexlimiva 3147 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 86 | 78, 85 | mpgbir 1799 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑦 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
| 87 | | brralrspcev 5203 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) |
| 88 | 86, 87 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) |
| 89 | | retop 24782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(topGen‘ran (,)) ∈ Top |
| 90 | | 0cld 23046 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((topGen‘ran (,)) ∈ Top → ∅ ∈
(Clsd‘(topGen‘ran (,)))) |
| 91 | 89, 90 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∅
∈ (Clsd‘(topGen‘ran (,))) |
| 92 | | 0ss 4400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) |
| 93 | | 0mbl 25574 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ∅
∈ dom vol |
| 94 | | mblvol 25565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
| 95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(vol‘∅) = (vol*‘∅) |
| 96 | | ovol0 25528 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(vol*‘∅) = 0 |
| 97 | 95, 96 | eqtr2i 2766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 =
(vol‘∅) |
| 98 | 92, 97 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (∅
⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 =
(vol‘∅)) |
| 99 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = ∅ → (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ ∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 100 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = ∅ →
(vol‘𝑎) =
(vol‘∅)) |
| 101 | 100 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = ∅ → (0 =
(vol‘𝑎) ↔ 0 =
(vol‘∅))) |
| 102 | 99, 101 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = ∅ → ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) ↔ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 =
(vol‘∅)))) |
| 103 | 102 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((∅
∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))) →
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))) |
| 104 | 91, 98, 103 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) |
| 105 | | c0ex 11255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
V |
| 106 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 0 → (𝑧 = (vol‘𝑎) ↔ 0 = (vol‘𝑎))) |
| 107 | 106 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 0 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))) |
| 108 | 107 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 0 → (∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))) |
| 109 | 105, 108 | elab 3679 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))) |
| 110 | 104, 109 | mpbir 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} |
| 111 | 110 | ne0ii 4344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ |
| 112 | | suprcl 12228 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
| 113 | 111, 112 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
| 114 | 74, 88, 113 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
| 115 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 = (vol‘𝑐)) |
| 116 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑐 → (𝑏 ∈ dom vol ↔ 𝑐 ∈ dom vol)) |
| 117 | 116, 58 | vtoclga 3577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → 𝑐 ∈ dom vol) |
| 118 | | mblvol 25565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ dom vol →
(vol‘𝑐) =
(vol*‘𝑐)) |
| 119 | 117, 118 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑐) = (vol*‘𝑐)) |
| 120 | 115, 119 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑧 = (vol*‘𝑐)) |
| 121 | 120 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 = (vol*‘𝑐)) |
| 122 | | difss2 4138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 123 | 122 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 124 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑐) ∈
ℝ) |
| 125 | 16, 124 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈
ℝ) |
| 126 | 125 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘𝑐) ∈ ℝ) |
| 127 | 123, 126 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → (vol*‘𝑐) ∈ ℝ) |
| 128 | 121, 127 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 ∈ ℝ) |
| 129 | 128 | rexlimdvaa 3156 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 ∈ ℝ)) |
| 130 | 129 | abssdv 4068 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ) |
| 131 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑦 → (𝑧 = (vol‘𝑐) ↔ 𝑦 = (vol‘𝑐))) |
| 132 | 131 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑦 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐)))) |
| 133 | 132 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)))) |
| 134 | 133 | ralab 3697 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 135 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 = (vol‘𝑐)) |
| 136 | 135, 119 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 = (vol*‘𝑐)) |
| 137 | | ovolss 25520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
→ (vol*‘𝑐) ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
| 138 | 122, 16, 137 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 139 | 138 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 140 | 136, 139 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 141 | 140 | rexlimiva 3147 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 142 | 134, 141 | mpgbir 1799 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
| 143 | | brralrspcev 5203 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) |
| 144 | 142, 143 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) |
| 145 | | 0ss 4400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) |
| 146 | 145, 97 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (∅
⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 =
(vol‘∅)) |
| 147 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = ∅ → (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ↔ ∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 148 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = ∅ →
(vol‘𝑐) =
(vol‘∅)) |
| 149 | 148 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = ∅ → (0 =
(vol‘𝑐) ↔ 0 =
(vol‘∅))) |
| 150 | 147, 149 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 = ∅ → ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)) ↔ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 =
(vol‘∅)))) |
| 151 | 150 | rspcev 3622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((∅
∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))) →
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐))) |
| 152 | 91, 146, 151 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐)) |
| 153 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 0 → (𝑧 = (vol‘𝑐) ↔ 0 = (vol‘𝑐))) |
| 154 | 153 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 0 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐)))) |
| 155 | 154 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 0 → (∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)))) |
| 156 | 105, 155 | elab 3679 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))) |
| 157 | 152, 156 | mpbir 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} |
| 158 | 157 | ne0ii 4344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ |
| 159 | | suprcl 12228 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
| 160 | 158, 159 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
| 161 | 130, 144,
160 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
| 162 | 114, 161 | readdcld 11290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈
ℝ) |
| 163 | 162 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈
ℝ) |
| 164 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 165 | 6 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ∈ ℝ) |
| 166 | 9 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ∈ ℝ) |
| 167 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
| 168 | 64, 16, 167 | mp3an12 1453 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
| 169 | 168 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
| 170 | | difss 4136 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 171 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 172 | 170, 16, 171 | mp3an12 1453 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 173 | 172 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 174 | | ssrin 4242 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝑤 ∩ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴)) |
| 175 | 64, 16 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ |
| 176 | | ovolss 25520 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∩ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 177 | 174, 175,
176 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 178 | 177 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
| 179 | | ssdif 4144 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝑤 ∖ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) |
| 180 | 170, 16 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ |
| 181 | | ovolss 25520 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∖ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 182 | 179, 180,
181 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 183 | 182 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 184 | 165, 166,
169, 173, 178, 183 | le2addd 11882 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 185 | | dfin4 4278 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) = (∪ ran ((,)
∘ 𝑓) ∖ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 186 | 185 | fveq2i 6909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
| 187 | 186 | oveq1i 7441 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 188 | 184, 187 | breqtrdi 5184 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 189 | 188 | adantlll 718 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 190 | | simpll 767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧
(vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) |
| 191 | 185 | sseq2i 4013 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ 𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 192 | 191 | anbi1i 624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))) |
| 193 | 192 | rexbii 3094 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ 𝑧 = (vol‘𝑎))) |
| 194 | 193 | abbii 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ 𝑧 = (vol‘𝑎))} |
| 195 | 194 | supeq1i 9487 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
| 196 | 16 | jctl 523 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → (∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ)) |
| 197 | 196 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ)) |
| 198 | 172, 180 | jctil 519 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)) |
| 199 | 198 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)) |
| 200 | | ltso 11341 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ < Or
ℝ |
| 201 | 200 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → < Or
ℝ) |
| 202 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 203 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑥 ∈ V |
| 204 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = 𝑥 → (𝑧 = (vol‘𝑐) ↔ 𝑥 = (vol‘𝑐))) |
| 205 | 204 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑥 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))) |
| 206 | 205 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑥 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))) |
| 207 | 203, 206 | elab 3679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) |
| 208 | 16, 137 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 209 | 208 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 210 | 48 | cldss 23037 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → 𝑐 ⊆ ℝ) |
| 211 | | ovolcl 25513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ⊆ ℝ →
(vol*‘𝑐) ∈
ℝ*) |
| 212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) ∈
ℝ*) |
| 213 | | xrlenlt 11326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((vol*‘𝑐)
∈ ℝ* ∧ (vol*‘∪ ran
((,) ∘ 𝑓)) ∈
ℝ*) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 214 | 212, 34, 213 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 215 | 214 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 216 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 = (vol‘𝑐) → 𝑥 = (vol‘𝑐)) |
| 217 | 216, 119 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → 𝑥 = (vol*‘𝑐)) |
| 218 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 = (vol*‘𝑐) → ((vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 219 | 218 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑥 = (vol*‘𝑐) → (¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 220 | 217, 219 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → (¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 221 | 220 | adantrl 716 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
| 222 | 215, 221 | bitr4d 282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥)) |
| 223 | 209, 222 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 224 | 223 | rexlimiva 3147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 225 | 207, 224 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 226 | 225 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
| 227 | | retopbas 24781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ran (,)
∈ TopBases |
| 228 | | bastg 22973 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (ran (,)
∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) |
| 229 | 227, 228 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ran (,)
⊆ (topGen‘ran (,)) |
| 230 | 13, 229 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ran ((,)
∘ 𝑓) ⊆
(topGen‘ran (,)) |
| 231 | | uniopn 22903 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran
(,))) → ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,))) |
| 232 | 89, 230, 231 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,)) |
| 233 | | mblfinlem2 37665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) ∧ 𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐))) |
| 234 | 232, 233 | mp3an1 1450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐))) |
| 235 | 119 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) = (vol‘𝑐)) |
| 236 | 235 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 < (vol*‘𝑐)) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) |
| 237 | 236 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (𝑥 < (vol*‘𝑐) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐)))) |
| 238 | 237 | anim2d 612 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘𝑐) =
(vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))))) |
| 239 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(vol*‘𝑐)
∈ V |
| 240 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 = (vol*‘𝑐) → (𝑦 = (vol‘𝑐) ↔ (vol*‘𝑐) = (vol‘𝑐))) |
| 241 | 240 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = (vol*‘𝑐) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘𝑐) =
(vol‘𝑐)))) |
| 242 | | breq2 5147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = (vol*‘𝑐) → (𝑥 < 𝑦 ↔ 𝑥 < (vol*‘𝑐))) |
| 243 | 241, 242 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = (vol*‘𝑐) → (((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘𝑐) =
(vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)))) |
| 244 | 239, 243 | spcev 3606 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 245 | 244 | anasss 466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 246 | 238, 245 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))) |
| 247 | 246 | reximia 3081 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 248 | 234, 247 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))∃𝑦((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 249 | | r19.41v 3189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 250 | 249 | exbii 1848 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑦∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 251 | | rexcom4 3288 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 252 | 131 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = 𝑦 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)))) |
| 253 | 252 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)))) |
| 254 | 253 | rexab 3700 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦 ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
| 255 | 250, 251,
254 | 3bitr4i 303 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
| 256 | 248, 255 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
| 257 | 256 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓)))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
| 258 | 201, 202,
226, 257 | eqsupd 9497 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 259 | 258 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 260 | 259 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 261 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ↔
𝑎 ⊆ ∪ ran ((,) ∘ 𝑓))) |
| 262 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑎 → (vol‘𝑐) = (vol‘𝑎)) |
| 263 | 262 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑧 = (vol‘𝑐) ↔ 𝑧 = (vol‘𝑎))) |
| 264 | 261, 263 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎)))) |
| 265 | 264 | cbvrexvw 3238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))) |
| 266 | 265 | abbii 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))} |
| 267 | 266 | supeq1i 9487 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
sup({𝑧 ∣
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
| 268 | 260, 267 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )) |
| 269 | | simpll 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
| 270 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑧 → (𝑦 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑏))) |
| 271 | 270 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = 𝑧 → ((𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)))) |
| 272 | 271 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)))) |
| 273 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑐 → (𝑏 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
| 274 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑐 → (vol‘𝑏) = (vol‘𝑐)) |
| 275 | 274 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑐 → (𝑧 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑐))) |
| 276 | 273, 275 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑏 = 𝑐 → ((𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)) ↔ (𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐)))) |
| 277 | 276 | cbvrexvw 3238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))) |
| 278 | 272, 277 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐)))) |
| 279 | 278 | cbvabv 2812 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ {𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} = {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))} |
| 280 | 279 | supeq1i 9487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) |
| 281 | 280 | eqeq2i 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘𝐴) =
sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 282 | 281 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((vol*‘𝐴) =
sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 283 | 282 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
| 284 | | mblfinlem3 37666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∧ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 285 | 197, 269,
260, 283, 284 | syl112anc 1376 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 286 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ↔ 𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 287 | 286, 263 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑎)))) |
| 288 | 287 | cbvrexvw 3238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))) |
| 289 | 288 | abbii 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))} |
| 290 | 289 | supeq1i 9487 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
sup({𝑧 ∣
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
| 291 | 285, 290 | eqtr3di 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )) |
| 292 | | mblfinlem3 37666 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 293 | 197, 199,
268, 291, 292 | syl112anc 1376 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 294 | 195, 293 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 295 | 294, 285 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 296 | 190, 295 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
| 297 | 189, 296 | breqtrrd 5171 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))) |
| 298 | | ne0i 4341 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅) |
| 299 | 110, 298 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅) |
| 300 | | ne0i 4341 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅) |
| 301 | 157, 300 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅) |
| 302 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} = {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} |
| 303 | 74, 299, 88, 130, 301, 144, 302 | supadd 12236 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < )) |
| 304 | | reeanv 3229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 305 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑢 ∈ V |
| 306 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑢 → (𝑧 = (vol‘𝑎) ↔ 𝑢 = (vol‘𝑎))) |
| 307 | 306 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑢 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))) |
| 308 | 307 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑢 → (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))) |
| 309 | 305, 308 | elab 3679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎))) |
| 310 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑣 ∈ V |
| 311 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑣 → (𝑧 = (vol‘𝑐) ↔ 𝑣 = (vol‘𝑐))) |
| 312 | 311 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑣 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 313 | 312 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑣 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 314 | 310, 313 | elab 3679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) |
| 315 | 309, 314 | anbi12i 628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 316 | 304, 315 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) |
| 317 | | an4 656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ↔ ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
| 318 | | oveq12 7440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐)) → (𝑢 + 𝑣) = ((vol‘𝑎) + (vol‘𝑐))) |
| 319 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ 𝑎 ∈ dom
vol) |
| 320 | 319 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → 𝑎 ∈ dom
vol) |
| 321 | 117 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ 𝑐 ∈ dom
vol) |
| 322 | 321 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → 𝑐 ∈ dom
vol) |
| 323 | | ss2in 4245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) ⊆ ((∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 324 | 185 | ineq1i 4216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = ((∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 325 | | incom 4209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = ((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ∩ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
| 326 | | disjdif 4472 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = ∅ |
| 327 | 324, 325,
326 | 3eqtri 2769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) =
∅ |
| 328 | 323, 327 | sseqtrdi 4024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) ⊆ ∅) |
| 329 | | ss0 4402 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∩ 𝑐) ⊆ ∅ → (𝑎 ∩ 𝑐) = ∅) |
| 330 | 328, 329 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) = ∅) |
| 331 | 330 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → (𝑎 ∩ 𝑐) = ∅) |
| 332 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘𝑎) =
(vol*‘𝑎)) |
| 333 | 332 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑎) =
(vol*‘𝑎)) |
| 334 | 66, 16 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → (𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ)) |
| 335 | 68 | 3expa 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑎) ∈
ℝ) |
| 336 | 334, 335 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈
ℝ) |
| 337 | 336 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) → (vol*‘𝑎) ∈ ℝ) |
| 338 | 337 | ad2ant2r 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol*‘𝑎) ∈
ℝ) |
| 339 | 333, 338 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑎) ∈
ℝ) |
| 340 | 119 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘𝑐) =
(vol*‘𝑐)) |
| 341 | 340 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑐) =
(vol*‘𝑐)) |
| 342 | 122, 16 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ)) |
| 343 | 124 | 3expa 1119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑐) ∈
ℝ) |
| 344 | 342, 343 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈
ℝ) |
| 345 | 344 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) → (vol*‘𝑐) ∈ ℝ) |
| 346 | 345 | ad2ant2rl 749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol*‘𝑐) ∈
ℝ) |
| 347 | 341, 346 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑐) ∈
ℝ) |
| 348 | | volun 25580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol ∧ (𝑎 ∩ 𝑐) = ∅) ∧ ((vol‘𝑎) ∈ ℝ ∧
(vol‘𝑐) ∈
ℝ)) → (vol‘(𝑎 ∪ 𝑐)) = ((vol‘𝑎) + (vol‘𝑐))) |
| 349 | 320, 322,
331, 339, 347, 348 | syl32anc 1380 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘(𝑎 ∪ 𝑐)) = ((vol‘𝑎) + (vol‘𝑐))) |
| 350 | | unmbl 25572 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol) → (𝑎 ∪ 𝑐) ∈ dom vol) |
| 351 | 59, 117, 350 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (𝑎 ∪ 𝑐) ∈ dom
vol) |
| 352 | | mblvol 25565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∪ 𝑐) ∈ dom vol → (vol‘(𝑎 ∪ 𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
| 353 | 351, 352 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘(𝑎 ∪
𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
| 354 | 353 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘(𝑎 ∪ 𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
| 355 | 349, 354 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
((vol‘𝑎) +
(vol‘𝑐)) =
(vol*‘(𝑎 ∪ 𝑐))) |
| 356 | 318, 355 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐))) |
| 357 | | eqtr 2760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 = (𝑢 + 𝑣) ∧ (𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐))) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
| 358 | 357 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐)) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
| 359 | 356, 358 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
| 360 | 66, 122 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓))) |
| 361 | | unss 4190 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) ↔
(𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 362 | 360, 361 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 363 | | ovolss 25520 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 364 | 362, 16, 363 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) →
(vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 365 | 364 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → (vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 366 | 359, 365 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 367 | 366 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 368 | 367 | expl 457 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
→ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 369 | 317, 368 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
→ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 370 | 369 | rexlimdvva 3213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 371 | 316, 370 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
| 372 | 371 | rexlimdvv 3212 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 373 | 372 | alrimiv 1927 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 374 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑦 → (𝑡 = (𝑢 + 𝑣) ↔ 𝑦 = (𝑢 + 𝑣))) |
| 375 | 374 | 2rexbidv 3222 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑦 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣))) |
| 376 | 375 | ralab 3697 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑦 ∈
{𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 377 | 373, 376 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 378 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 = (𝑢 + 𝑣)) |
| 379 | 74 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) → 𝑢 ∈ ℝ) |
| 380 | 130 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → 𝑣 ∈ ℝ) |
| 381 | | readdcl 11238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ) |
| 382 | 379, 380,
381 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ) |
| 383 | 382 | anandis 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ) |
| 384 | 383 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → (𝑢 + 𝑣) ∈ ℝ) |
| 385 | 378, 384 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 ∈ ℝ) |
| 386 | 385 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ)) |
| 387 | 386 | rexlimdvva 3213 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ)) |
| 388 | 387 | abssdv 4068 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ) |
| 389 | | 00id 11436 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (0 + 0) =
0 |
| 390 | 389 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 0 = (0 +
0) |
| 391 | | rspceov 7480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0
∈ {𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ∧ 0 = (0 + 0)) → ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣)) |
| 392 | 110, 157,
390, 391 | mp3an 1463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
∃𝑢 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) |
| 393 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 0 → (𝑡 = (𝑢 + 𝑣) ↔ 0 = (𝑢 + 𝑣))) |
| 394 | 393 | 2rexbidv 3222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 0 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣))) |
| 395 | 105, 394 | spcev 3606 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑢 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) → ∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)) |
| 396 | 392, 395 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) |
| 397 | | abn0 4385 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ↔ ∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)) |
| 398 | 396, 397 | mpbir 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ |
| 399 | 398 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅) |
| 400 | | brralrspcev 5203 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) |
| 401 | 377, 400 | mpdan 687 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) |
| 402 | 388, 399,
401 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥)) |
| 403 | | suprleub 12234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 404 | 402, 403 | mpancom 688 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑡 ∣
∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 405 | 377, 404 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 406 | 303, 405 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 407 | 406 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 408 | 45, 163, 164, 297, 407 | letrd 11418 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 409 | 44, 408 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 410 | 33, 409 | pm2.61dane 3029 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 411 | 410 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 412 | | ssid 4006 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 413 | 20 | ovollb 25514 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝑓) ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 414 | 412, 413 | mpan2 691 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (vol*‘∪ ran
((,) ∘ 𝑓)) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
| 415 | 414 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 416 | 12, 18, 27, 411, 415 | xrletrd 13204 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 417 | 416 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 418 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) |
| 419 | 417, 418 | breqtrrd 5171 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢) |
| 420 | 419 | expl 457 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → ((𝑤
⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 421 | 3, 420 | sylan2 593 |
. . . . . . . . . . 11
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)) →
((𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 422 | 421 | rexlimdva 3155 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 423 | 422 | ralrimivw 3150 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ∀𝑢
∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) →
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 424 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑢 → (𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ↔ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))) |
| 425 | 424 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑢 → ((𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )))) |
| 426 | 425 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑢 → (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
)))) |
| 427 | 426 | ralrab 3699 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
{𝑣 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢 ↔ ∀𝑢 ∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) →
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 428 | 423, 427 | sylibr 234 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ∀𝑢
∈ {𝑣 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢) |
| 429 | | ssrab2 4080 |
. . . . . . . . 9
⊢ {𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ⊆ ℝ* |
| 430 | 11 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
| 431 | | infxrgelb 13377 |
. . . . . . . . 9
⊢ (({𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ⊆ ℝ* ∧
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ*) →
(((vol*‘(𝑤 ∩
𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 432 | 429, 430,
431 | sylancr 587 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
| 433 | 428, 432 | mpbird 257 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) |
| 434 | | eqid 2737 |
. . . . . . . . 9
⊢ {𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} = {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
))} |
| 435 | 434 | ovolval 25508 |
. . . . . . . 8
⊢ (𝑤 ⊆ ℝ →
(vol*‘𝑤) = inf({𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
| 436 | 435 | ad2antrl 728 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (vol*‘𝑤) = inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) |
| 437 | 433, 436 | breqtrrd 5171 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) |
| 438 | 437 | expr 456 |
. . . . 5
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ⊆ ℝ) →
((vol*‘𝑤) ∈
ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
| 439 | 2, 438 | sylan2 593 |
. . . 4
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ∈ 𝒫 ℝ)
→ ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
| 440 | 439 | ralrimiva 3146 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → ∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
| 441 | | ismbl2 25562 |
. . . . 5
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧
∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)))) |
| 442 | 441 | baibr 536 |
. . . 4
⊢ (𝐴 ⊆ ℝ →
(∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol)) |
| 443 | 442 | ad2antrr 726 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → (∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol)) |
| 444 | 440, 443 | mpbid 232 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → 𝐴 ∈ dom
vol) |
| 445 | 1, 444 | impbida 801 |
1
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝐴 ∈
dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) |