Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismblfin Structured version   Visualization version   GIF version

Theorem ismblfin 37631
Description: Measurability in terms of inner and outer measure. Proposition 7 of [Viaclovsky8] p. 3. (Contributed by Brendan Leahy, 4-Mar-2018.) (Revised by Brendan Leahy, 28-Mar-2018.)
Assertion
Ref Expression
ismblfin ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))
Distinct variable group:   𝑦,𝑏,𝐴

Proof of Theorem ismblfin
Dummy variables 𝑎 𝑐 𝑓 𝑡 𝑢 𝑣 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mblfinlem4 37630 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) → (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ))
2 elpwi 4582 . . . . 5 (𝑤 ∈ 𝒫 ℝ → 𝑤 ⊆ ℝ)
3 elmapi 8861 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss1 4212 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐴) ⊆ 𝑤
5 ovolsscl 25437 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝐴) ⊆ 𝑤𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
64, 5mp3an1 1450 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
7 difss 4111 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝐴) ⊆ 𝑤
8 ovolsscl 25437 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝐴) ⊆ 𝑤𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
97, 8mp3an1 1450 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
106, 9readdcld 11262 . . . . . . . . . . . . . . . . . 18 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ)
1110rexrd 11283 . . . . . . . . . . . . . . . . 17 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*)
1211ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*)
13 rncoss 5955 . . . . . . . . . . . . . . . . . . 19 ran ((,) ∘ 𝑓) ⊆ ran (,)
1413unissi 4892 . . . . . . . . . . . . . . . . . 18 ran ((,) ∘ 𝑓) ⊆ ran (,)
15 unirnioo 13464 . . . . . . . . . . . . . . . . . 18 ℝ = ran (,)
1614, 15sseqtrri 4008 . . . . . . . . . . . . . . . . 17 ran ((,) ∘ 𝑓) ⊆ ℝ
17 ovolcl 25429 . . . . . . . . . . . . . . . . 17 ( ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*)
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*)
19 eqid 2735 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
20 eqid 2735 . . . . . . . . . . . . . . . . . . 19 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
2119, 20ovolsf 25423 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
22 frn 6712 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
23 icossxr 13447 . . . . . . . . . . . . . . . . . . 19 (0[,)+∞) ⊆ ℝ*
2422, 23sstrdi 3971 . . . . . . . . . . . . . . . . . 18 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
25 supxrcl 13329 . . . . . . . . . . . . . . . . . 18 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2621, 24, 253syl 18 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2726ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
28 pnfge 13144 . . . . . . . . . . . . . . . . . . . . . 22 (((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ* → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ +∞)
2911, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ +∞)
3029ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ +∞)
31 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → (vol*‘ ran ((,) ∘ 𝑓)) = +∞)
3230, 31breqtrrd 5147 . . . . . . . . . . . . . . . . . . 19 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
3332adantlll 718 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
3416, 17ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*
35 nltpnft 13178 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ* → ((vol*‘ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < +∞))
3634, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < +∞)
3736necon2abii 2982 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘ ran ((,) ∘ 𝑓)) < +∞ ↔ (vol*‘ ran ((,) ∘ 𝑓)) ≠ +∞)
38 ovolge0 25432 . . . . . . . . . . . . . . . . . . . . . 22 ( ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
3916, 38ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ (vol*‘ ran ((,) ∘ 𝑓))
40 0re 11235 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
41 xrre3 13185 . . . . . . . . . . . . . . . . . . . . . 22 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧ 0 ∈ ℝ) ∧ (0 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) < +∞)) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4234, 40, 41mpanl12 702 . . . . . . . . . . . . . . . . . . . . 21 ((0 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) < +∞) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4339, 42mpan 690 . . . . . . . . . . . . . . . . . . . 20 ((vol*‘ ran ((,) ∘ 𝑓)) < +∞ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4437, 43sylbir 235 . . . . . . . . . . . . . . . . . . 19 ((vol*‘ ran ((,) ∘ 𝑓)) ≠ +∞ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
4510ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ)
46 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 = (vol‘𝑎))
47 eleq1w 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑎 → (𝑏 ∈ dom vol ↔ 𝑎 ∈ dom vol))
48 uniretop 24699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ℝ = (topGen‘ran (,))
4948cldss 22965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ)
50 dfss4 4244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝑏)) = 𝑏)
5149, 50sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖ 𝑏)) = 𝑏)
52 rembl 25491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ℝ ∈ dom vol
5348cldopn 22967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran (,)))
54 opnmbl 25553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((ℝ ∖ 𝑏) ∈ (topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol)
56 difmbl 25494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((ℝ ∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖ (ℝ ∖ 𝑏)) ∈ dom vol)
5752, 55, 56sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖ 𝑏)) ∈ dom vol)
5851, 57eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol)
5947, 58vtoclga 3556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ (Clsd‘(topGen‘ran (,))) → 𝑎 ∈ dom vol)
60 mblvol 25481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ dom vol → (vol‘𝑎) = (vol*‘𝑎))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘𝑎) = (vol*‘𝑎))
6246, 61sylan9eqr 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑧 = (vol*‘𝑎))
6362adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 = (vol*‘𝑎))
64 inss1 4212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓)
65 sstr 3967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓)) → 𝑎 ran ((,) ∘ 𝑓))
6664, 65mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) → 𝑎 ran ((,) ∘ 𝑓))
6766ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑎 ran ((,) ∘ 𝑓))
68 ovolsscl 25437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
6916, 68mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
7069ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ran ((,) ∘ 𝑓)) → (vol*‘𝑎) ∈ ℝ)
7167, 70sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → (vol*‘𝑎) ∈ ℝ)
7263, 71eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 ∈ ℝ)
7372rexlimdvaa 3142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 ∈ ℝ))
7473abssdv 4043 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ)
75 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 → (𝑧 = (vol‘𝑎) ↔ 𝑦 = (vol‘𝑎)))
7675anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))))
7776rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))))
7877ralab 3676 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
79 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 = (vol‘𝑎))
8079, 61sylan9eqr 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 = (vol*‘𝑎))
81 ovolss 25436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘𝑎) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8266, 16, 81sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) → (vol*‘𝑎) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8382ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → (vol*‘𝑎) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8480, 83eqbrtrd 5141 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8584rexlimiva 3133 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
8678, 85mpgbir 1799 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))
87 brralrspcev 5179 . . . . . . . . . . . . . . . . . . . . . . . 24 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥)
8886, 87mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥)
89 retop 24698 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGen‘ran (,)) ∈ Top
90 0cld 22974 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((topGen‘ran (,)) ∈ Top → ∅ ∈ (Clsd‘(topGen‘ran (,))))
9189, 90ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ∅ ∈ (Clsd‘(topGen‘ran (,)))
92 0ss 4375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴)
93 0mbl 25490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ∅ ∈ dom vol
94 mblvol 25481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (vol‘∅) = (vol*‘∅)
96 ovol0 25444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (vol*‘∅) = 0
9795, 96eqtr2i 2759 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 = (vol‘∅)
9892, 97pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))
99 sseq1 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = ∅ → (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ ∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴)))
100 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 = ∅ → (vol‘𝑎) = (vol‘∅))
101100eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = ∅ → (0 = (vol‘𝑎) ↔ 0 = (vol‘∅)))
10299, 101anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = ∅ → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) ↔ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))))
103102rspcev 3601 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))) → ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))
10491, 98, 103mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))
105 c0ex 11227 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ V
106 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 0 → (𝑧 = (vol‘𝑎) ↔ 0 = (vol‘𝑎)))
107106anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 0 → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))))
108107rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))))
109105, 108elab 3658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))
110104, 109mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}
111110ne0ii 4319 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅
112 suprcl 12200 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈ ℝ)
113111, 112mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈ ℝ)
11474, 88, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈ ℝ)
115 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 = (vol‘𝑐))
116 eleq1w 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑐 → (𝑏 ∈ dom vol ↔ 𝑐 ∈ dom vol))
117116, 58vtoclga 3556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → 𝑐 ∈ dom vol)
118 mblvol 25481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ dom vol → (vol‘𝑐) = (vol*‘𝑐))
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘𝑐) = (vol*‘𝑐))
120115, 119sylan9eqr 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑧 = (vol*‘𝑐))
121120adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 = (vol*‘𝑐))
122 difss2 4113 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) → 𝑐 ran ((,) ∘ 𝑓))
123122ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑐 ran ((,) ∘ 𝑓))
124 ovolsscl 25437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
12516, 124mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
126125ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ran ((,) ∘ 𝑓)) → (vol*‘𝑐) ∈ ℝ)
127123, 126sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)))) → (vol*‘𝑐) ∈ ℝ)
128121, 127eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 ∈ ℝ)
129128rexlimdvaa 3142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 ∈ ℝ))
130129abssdv 4043 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ)
131 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 → (𝑧 = (vol‘𝑐) ↔ 𝑦 = (vol‘𝑐)))
132131anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))))
133132rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))))
134133ralab 3676 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
135 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 = (vol‘𝑐))
136135, 119sylan9eqr 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 = (vol*‘𝑐))
137 ovolss 25436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
138122, 16, 137sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
139138ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
140136, 139eqbrtrd 5141 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
141140rexlimiva 3133 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
142134, 141mpgbir 1799 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))
143 brralrspcev 5179 . . . . . . . . . . . . . . . . . . . . . . . 24 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥)
144142, 143mpan2 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥)
145 0ss 4375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)
146145, 97pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))
147 sseq1 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = ∅ → (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ↔ ∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
148 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = ∅ → (vol‘𝑐) = (vol‘∅))
149148eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = ∅ → (0 = (vol‘𝑐) ↔ 0 = (vol‘∅)))
150147, 149anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = ∅ → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)) ↔ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))))
151150rspcev 3601 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)))
15291, 146, 151mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))
153 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 0 → (𝑧 = (vol‘𝑐) ↔ 0 = (vol‘𝑐)))
154153anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 0 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))))
155154rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))))
156105, 155elab 3658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)))
157152, 156mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}
158157ne0ii 4319 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅
159 suprcl 12200 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈ ℝ)
160158, 159mp3an2 1451 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈ ℝ)
161130, 144, 160syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈ ℝ)
162114, 161readdcld 11262 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈ ℝ)
163162adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈ ℝ)
164 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
1656ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
1669ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ∈ ℝ)
167 ovolsscl 25437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
16864, 16, 167mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
169168adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
170 difss 4111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ran ((,) ∘ 𝑓)
171 ovolsscl 25437 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)
172170, 16, 171mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)
173172adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)
174 ssrin 4217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ran ((,) ∘ 𝑓) → (𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴))
17564, 16sstri 3968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ
176 ovolss 25436 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)))
177174, 175, 176sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ran ((,) ∘ 𝑓) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)))
178177ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)))
179 ssdif 4119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ran ((,) ∘ 𝑓) → (𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))
180170, 16sstri 3968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ
181 ovolss 25436 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑤𝐴) ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
182179, 180, 181sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ran ((,) ∘ 𝑓) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
183182ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤𝐴)) ≤ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
184165, 166, 169, 173, 178, 183le2addd 11854 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
185 dfin4 4253 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ran ((,) ∘ 𝑓) ∩ 𝐴) = ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))
186185fveq2i 6878 . . . . . . . . . . . . . . . . . . . . . . . 24 (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
187186oveq1i 7413 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))) = ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
188184, 187breqtrdi 5160 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
189188adantlll 718 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
190 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))
191185sseq2i 3988 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ 𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
192191anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎)))
193192rexbii 3083 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎)))
194193abbii 2802 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}
195194supeq1i 9457 . . . . . . . . . . . . . . . . . . . . . . . 24 sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )
19616jctl 523 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ))
197196adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ))
198172, 180jctil 519 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ))
199198adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ))
200 ltso 11313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 < Or ℝ
201200a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → < Or ℝ)
202 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
203 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑥 ∈ V
204 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = 𝑥 → (𝑧 = (vol‘𝑐) ↔ 𝑥 = (vol‘𝑐)))
205204anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑥 → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))))
206205rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑥 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))))
207203, 206elab 3658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))
20816, 137mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 ran ((,) ∘ 𝑓) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
209208ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
21048cldss 22965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → 𝑐 ⊆ ℝ)
211 ovolcl 25429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ⊆ ℝ → (vol*‘𝑐) ∈ ℝ*)
212210, 211syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) ∈ ℝ*)
213 xrlenlt 11298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((vol*‘𝑐) ∈ ℝ* ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
214212, 34, 213sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
215214adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
216 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (vol‘𝑐) → 𝑥 = (vol‘𝑐))
217216, 119sylan9eqr 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → 𝑥 = (vol*‘𝑐))
218 breq2 5123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 = (vol*‘𝑐) → ((vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
219218notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑥 = (vol*‘𝑐) → (¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
220217, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → (¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
221220adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < (vol*‘𝑐)))
222215, 221bitr4d 282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥))
223209, 222mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
224223rexlimiva 3133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)) → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
225207, 224sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
226225adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}) → ¬ (vol*‘ ran ((,) ∘ 𝑓)) < 𝑥)
227 retopbas 24697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ran (,) ∈ TopBases
228 bastg 22902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
229227, 228ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ran (,) ⊆ (topGen‘ran (,))
23013, 229sstri 3968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,))
231 uniopn 22833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,))) → ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)))
23289, 230, 231mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,))
233 mblfinlem2 37628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) ∧ 𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)))
234232, 233mp3an1 1450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)))
235119eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) = (vol‘𝑐))
236235anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑐 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑥 < (vol*‘𝑐)) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐)))
237236ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → (𝑥 < (vol*‘𝑐) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))))
238237anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → (𝑐 ran ((,) ∘ 𝑓) ∧ ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐)))))
239 fvex 6888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (vol*‘𝑐) ∈ V
240 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 = (vol*‘𝑐) → (𝑦 = (vol‘𝑐) ↔ (vol*‘𝑐) = (vol‘𝑐)))
241240anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = (vol*‘𝑐) → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ↔ (𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐))))
242 breq2 5123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = (vol*‘𝑐) → (𝑥 < 𝑦𝑥 < (vol*‘𝑐)))
243241, 242anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = (vol*‘𝑐) → (((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ((𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐))))
244239, 243spcev 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐 ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
245244anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ran ((,) ∘ 𝑓) ∧ ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) → ∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
246238, 245syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 ∈ (Clsd‘(topGen‘ran (,))) → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)))
247246reximia 3071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
248234, 247syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
249 r19.41v 3174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
250249exbii 1848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑦𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
251 rexcom4 3269 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
252131anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = 𝑦 → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐))))
253252rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐))))
254253rexab 3678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦 ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))
255250, 251, 2543bitr4i 303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦)
256248, 255sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦)
257256adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘ ran ((,) ∘ 𝑓)))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦)
258201, 202, 226, 257eqsupd 9467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘ ran ((,) ∘ 𝑓)))
259258eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))
260259adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))
261 sseq1 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (𝑐 ran ((,) ∘ 𝑓) ↔ 𝑎 ran ((,) ∘ 𝑓)))
262 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = 𝑎 → (vol‘𝑐) = (vol‘𝑎))
263262eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (𝑧 = (vol‘𝑐) ↔ 𝑧 = (vol‘𝑎)))
264261, 263anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))))
265264cbvrexvw 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎)))
266265abbii 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}
267266supeq1i 9457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )
268260, 267eqtrdi 2786 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))
269 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
270 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = 𝑧 → (𝑦 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑏)))
271270anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = 𝑧 → ((𝑏𝐴𝑦 = (vol‘𝑏)) ↔ (𝑏𝐴𝑧 = (vol‘𝑏))))
272271rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑧 = (vol‘𝑏))))
273 sseq1 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑐 → (𝑏𝐴𝑐𝐴))
274 fveq2 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑐 → (vol‘𝑏) = (vol‘𝑐))
275274eqeq2d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑐 → (𝑧 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑐)))
276273, 275anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑏 = 𝑐 → ((𝑏𝐴𝑧 = (vol‘𝑏)) ↔ (𝑐𝐴𝑧 = (vol‘𝑐))))
277276cbvrexvw 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑧 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐)))
278272, 277bitrdi 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))))
279278cbvabv 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} = {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}
280279supeq1i 9457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < )
281280eqeq2i 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))
282281biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))
283282ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))
284 mblfinlem3 37629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ ((vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∧ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐𝐴𝑧 = (vol‘𝑐))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
285197, 269, 260, 283, 284syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)))
286 sseq1 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = 𝑎 → (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ↔ 𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
287286, 263anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = 𝑎 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))))
288287cbvrexvw 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎)))
289288abbii 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}
290289supeq1i 9457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )
291285, 290eqtr3di 2785 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))
292 mblfinlem3 37629 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (( ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) ∧ ((vol*‘ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))))
293197, 199, 268, 291, 292syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))))
294195, 293eqtrid 2782 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))))
295294, 285oveq12d 7421 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
296190, 295sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝐴))))
297189, 296breqtrrd 5147 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )))
298 ne0i 4316 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅)
299110, 298mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅)
300 ne0i 4316 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅)
301157, 300mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅)
302 eqid 2735 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} = {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}
30374, 299, 88, 130, 301, 144, 302supadd 12208 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ))
304 reeanv 3213 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
305 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑢 ∈ V
306 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑢 → (𝑧 = (vol‘𝑎) ↔ 𝑢 = (vol‘𝑎)))
307306anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑢 → ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎))))
308307rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑢 → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎))))
309305, 308elab 3658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))
310 vex 3463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑣 ∈ V
311 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑣 → (𝑧 = (vol‘𝑐) ↔ 𝑣 = (vol‘𝑐)))
312311anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑣 → ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
313312rexbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑣 → (∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
314310, 313elab 3658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))
315309, 314anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
316304, 315bitr4i 278 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}))
317 an4 656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ↔ ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))))
318 oveq12 7412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐)) → (𝑢 + 𝑣) = ((vol‘𝑎) + (vol‘𝑐)))
31959adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → 𝑎 ∈ dom vol)
320319ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → 𝑎 ∈ dom vol)
321117adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → 𝑐 ∈ dom vol)
322321ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → 𝑐 ∈ dom vol)
323 ss2in 4220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) ⊆ (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
324185ineq1i 4191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) = (( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴))
325 incom 4184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) = (( ran ((,) ∘ 𝑓) ∖ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴)))
326 disjdif 4447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (( ran ((,) ∘ 𝑓) ∖ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) = ∅
327324, 325, 3263eqtri 2762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) = ∅
328323, 327sseqtrdi 3999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) ⊆ ∅)
329 ss0 4377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎𝑐) ⊆ ∅ → (𝑎𝑐) = ∅)
330328, 329syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) = ∅)
331330adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (𝑎𝑐) = ∅)
33261adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘𝑎) = (vol*‘𝑎))
333332ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑎) = (vol*‘𝑎))
33466, 16jctir 520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) → (𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ))
335683expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑎 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
336334, 335sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈ ℝ)
337336ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴)) → (vol*‘𝑎) ∈ ℝ)
338337ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol*‘𝑎) ∈ ℝ)
339333, 338eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑎) ∈ ℝ)
340119adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘𝑐) = (vol*‘𝑐))
341340ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑐) = (vol*‘𝑐))
342122, 16jctir 520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) → (𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ))
3431243expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑐 ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
344342, 343sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈ ℝ)
345344ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (vol*‘𝑐) ∈ ℝ)
346345ad2ant2rl 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol*‘𝑐) ∈ ℝ)
347341, 346eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘𝑐) ∈ ℝ)
348 volun 25496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol ∧ (𝑎𝑐) = ∅) ∧ ((vol‘𝑎) ∈ ℝ ∧ (vol‘𝑐) ∈ ℝ)) → (vol‘(𝑎𝑐)) = ((vol‘𝑎) + (vol‘𝑐)))
349320, 322, 331, 339, 347, 348syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘(𝑎𝑐)) = ((vol‘𝑎) + (vol‘𝑐)))
350 unmbl 25488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol) → (𝑎𝑐) ∈ dom vol)
35159, 117, 350syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (𝑎𝑐) ∈ dom vol)
352 mblvol 25481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑎𝑐) ∈ dom vol → (vol‘(𝑎𝑐)) = (vol*‘(𝑎𝑐)))
353351, 352syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘(𝑎𝑐)) = (vol*‘(𝑎𝑐)))
354353ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → (vol‘(𝑎𝑐)) = (vol*‘(𝑎𝑐)))
355349, 354eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) → ((vol‘𝑎) + (vol‘𝑐)) = (vol*‘(𝑎𝑐)))
356318, 355sylan9eqr 2792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑢 + 𝑣) = (vol*‘(𝑎𝑐)))
357 eqtr 2755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 = (𝑢 + 𝑣) ∧ (𝑢 + 𝑣) = (vol*‘(𝑎𝑐))) → 𝑦 = (vol*‘(𝑎𝑐)))
358357ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑢 + 𝑣) = (vol*‘(𝑎𝑐)) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎𝑐)))
359356, 358sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎𝑐)))
36066, 122anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎 ran ((,) ∘ 𝑓) ∧ 𝑐 ran ((,) ∘ 𝑓)))
361 unss 4165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑎 ran ((,) ∘ 𝑓) ∧ 𝑐 ran ((,) ∘ 𝑓)) ↔ (𝑎𝑐) ⊆ ran ((,) ∘ 𝑓))
362360, 361sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (𝑎𝑐) ⊆ ran ((,) ∘ 𝑓))
363 ovolss 25436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑎𝑐) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘(𝑎𝑐)) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
364362, 16, 363sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) → (vol*‘(𝑎𝑐)) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
365364ad3antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → (vol*‘(𝑎𝑐)) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
366359, 365eqbrtrd 5141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
367366ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) ∧ (𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
368367expl 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) → (((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
369317, 368biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))) → (((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
370369rexlimdvva 3198 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))((𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
371316, 370biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))))
372371rexlimdvv 3197 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
373372alrimiv 1927 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
374 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑦 → (𝑡 = (𝑢 + 𝑣) ↔ 𝑦 = (𝑢 + 𝑣)))
3753742rexbidv 3206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑦 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣)))
376375ralab 3676 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
377373, 376sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
378 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 = (𝑢 + 𝑣))
37974sselda 3958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) → 𝑢 ∈ ℝ)
380130sselda 3958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → 𝑣 ∈ ℝ)
381 readdcl 11210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ)
382379, 380, 381syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) ∧ ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ)
383382anandis 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ)
384383adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → (𝑢 + 𝑣) ∈ ℝ)
385378, 384eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 ∈ ℝ)
386385ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ))
387386rexlimdvva 3198 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ))
388387abssdv 4043 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ)
389 00id 11408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 + 0) = 0
390389eqcomi 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (0 + 0)
391 rspceov 7452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ∧ 0 = (0 + 0)) → ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣))
392110, 157, 390, 391mp3an 1463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣)
393 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑡 = 0 → (𝑡 = (𝑢 + 𝑣) ↔ 0 = (𝑢 + 𝑣)))
3943932rexbidv 3206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 0 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣)))
395105, 394spcev 3585 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) → ∃𝑡𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣))
396392, 395ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑡𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)
397 abn0 4360 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ↔ ∃𝑡𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣))
398396, 397mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅
399398a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅)
400 brralrspcev 5179 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥)
401377, 400mpdan 687 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥)
402388, 399, 4013jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥))
403 suprleub 12206 . . . . . . . . . . . . . . . . . . . . . . . 24 ((({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦𝑥) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
404402, 403mpancom 688 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘ ran ((,) ∘ 𝑓))))
405377, 404mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
406303, 405eqbrtrd 5141 . . . . . . . . . . . . . . . . . . . . 21 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
407406adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ( ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
40845, 163, 164, 297, 407letrd 11390 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
40944, 408sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≠ +∞) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
41033, 409pm2.61dane 3019 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
411410adantlr 715 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘ ran ((,) ∘ 𝑓)))
412 ssid 3981 . . . . . . . . . . . . . . . . . 18 ran ((,) ∘ 𝑓) ⊆ ran ((,) ∘ 𝑓)
41320ovollb 25430 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝑓) ⊆ ran ((,) ∘ 𝑓)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
414412, 413mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
415414ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
41612, 18, 27, 411, 415xrletrd 13176 . . . . . . . . . . . . . . 15 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
417416adantr 480 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
418 simpr 484 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
419417, 418breqtrrd 5147 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑤 ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢)
420419expl 457 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ((𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
4213, 420sylan2 593 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) ∧ 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
422421rexlimdva 3141 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
423422ralrimivw 3136 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ∀𝑢 ∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
424 eqeq1 2739 . . . . . . . . . . . 12 (𝑣 = 𝑢 → (𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
425424anbi2d 630 . . . . . . . . . . 11 (𝑣 = 𝑢 → ((𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
426425rexbidv 3164 . . . . . . . . . 10 (𝑣 = 𝑢 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))))
427426ralrab 3677 . . . . . . . . 9 (∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢 ↔ ∀𝑢 ∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
428423, 427sylibr 234 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢)
429 ssrab2 4055 . . . . . . . . 9 {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ*
43011adantl 481 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*)
431 infxrgelb 13350 . . . . . . . . 9 (({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ* ∧ ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ∈ ℝ*) → (((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
432429, 430, 431sylancr 587 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → (((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ 𝑢))
433428, 432mpbird 257 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
434 eqid 2735 . . . . . . . . 9 {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
435434ovolval 25424 . . . . . . . 8 (𝑤 ⊆ ℝ → (vol*‘𝑤) = inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
436435ad2antrl 728 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → (vol*‘𝑤) = inf({𝑣 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
437433, 436breqtrrd 5147 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ)) → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤))
438437expr 456 . . . . 5 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ⊆ ℝ) → ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)))
4392, 438sylan2 593 . . . 4 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ∈ 𝒫 ℝ) → ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)))
440439ralrimiva 3132 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → ∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)))
441 ismbl2 25478 . . . . 5 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤))))
442441baibr 536 . . . 4 (𝐴 ⊆ ℝ → (∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol))
443442ad2antrr 726 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → (∀𝑤 ∈ 𝒫 ℝ((vol*‘𝑤) ∈ ℝ → ((vol*‘(𝑤𝐴)) + (vol*‘(𝑤𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol))
444440, 443mpbid 232 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → 𝐴 ∈ dom vol)
4451, 444impbida 800 1 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴 ∈ dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  {crab 3415  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883   class class class wbr 5119   Or wor 5560   × cxp 5652  dom cdm 5654  ran crn 5655  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  m cmap 8838  supcsup 9450  infcinf 9451  cr 11126  0cc0 11127  1c1 11128   + caddc 11130  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cmin 11464  cn 12238  (,)cioo 13360  [,)cico 13362  seqcseq 14017  abscabs 15251  topGenctg 17449  Topctop 22829  TopBasesctb 22881  Clsdccld 22952  vol*covol 25413  volcvol 25414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cld 22955  df-cmp 23323  df-conn 23348  df-ovol 25415  df-vol 25416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator