Step | Hyp | Ref
| Expression |
1 | | mblfinlem4 35377 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (vol*‘𝐴)
= sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) |
2 | | elpwi 4503 |
. . . . 5
⊢ (𝑤 ∈ 𝒫 ℝ →
𝑤 ⊆
ℝ) |
3 | | elmapi 8438 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
4 | | inss1 4133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∩ 𝐴) ⊆ 𝑤 |
5 | | ovolsscl 24186 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∩ 𝐴) ⊆ 𝑤 ∧ 𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) →
(vol*‘(𝑤 ∩ 𝐴)) ∈
ℝ) |
6 | 4, 5 | mp3an1 1445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ∈ ℝ) |
7 | | difss 4037 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∖ 𝐴) ⊆ 𝑤 |
8 | | ovolsscl 24186 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤 ∖ 𝐴) ⊆ 𝑤 ∧ 𝑤 ⊆ ℝ ∧ (vol*‘𝑤) ∈ ℝ) →
(vol*‘(𝑤 ∖
𝐴)) ∈
ℝ) |
9 | 7, 8 | mp3an1 1445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ∈ ℝ) |
10 | 6, 9 | readdcld 10708 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ) |
11 | 10 | rexrd 10729 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
12 | 11 | ad3antlr 730 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
13 | | rncoss 5813 |
. . . . . . . . . . . . . . . . . . 19
⊢ ran ((,)
∘ 𝑓) ⊆ ran
(,) |
14 | 13 | unissi 4807 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
(,) |
15 | | unirnioo 12881 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ =
∪ ran (,) |
16 | 14, 15 | sseqtrri 3929 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ |
17 | | ovolcl 24178 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
18 | 16, 17 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
19 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((abs
∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) |
20 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . 19
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
21 | 19, 20 | ovolsf 24172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑓)):ℕ⟶(0[,)+∞)) |
22 | | frn 6504 |
. . . . . . . . . . . . . . . . . . 19
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞)) |
23 | | icossxr 12864 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0[,)+∞) ⊆ ℝ* |
24 | 22, 23 | sstrdi 3904 |
. . . . . . . . . . . . . . . . . 18
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆
ℝ*) |
25 | | supxrcl 12749 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ*) |
26 | 21, 24, 25 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
27 | 26 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
28 | | pnfge 12566 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((vol*‘(𝑤
∩ 𝐴)) +
(vol*‘(𝑤 ∖
𝐴))) ∈
ℝ* → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
29 | 11, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
30 | 29 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ +∞) |
31 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) |
32 | 30, 31 | breqtrrd 5060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
33 | 32 | adantlll 717 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) = +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
34 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ* |
35 | | nltpnft 12598 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
→ ((vol*‘∪ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞)) |
36 | 34, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) = +∞ ↔ ¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞) |
37 | 36 | necon2abii 3001 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) < +∞ ↔
(vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞) |
38 | | ovolge0 24181 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
39 | 16, 38 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) |
40 | | 0re 10681 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ |
41 | | xrre3 12605 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
∧ 0 ∈ ℝ) ∧ (0 ≤ (vol*‘∪
ran ((,) ∘ 𝑓)) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) < +∞)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
42 | 34, 40, 41 | mpanl12 701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) < +∞) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
43 | 39, 42 | mpan 689 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) < +∞ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
44 | 37, 43 | sylbir 238 |
. . . . . . . . . . . . . . . . . . 19
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
45 | 10 | ad3antlr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ) |
46 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 = (vol‘𝑎)) |
47 | | eleq1w 2834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑎 → (𝑏 ∈ dom vol ↔ 𝑎 ∈ dom vol)) |
48 | | uniretop 23464 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ℝ =
∪ (topGen‘ran (,)) |
49 | 48 | cldss 21729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ) |
50 | | dfss4 4163 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ⊆ ℝ ↔ (ℝ
∖ (ℝ ∖ 𝑏)) = 𝑏) |
51 | 49, 50 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) = 𝑏) |
52 | | rembl 24240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ℝ
∈ dom vol |
53 | 48 | cldopn 21731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran
(,))) |
54 | | opnmbl 24302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℝ
∖ 𝑏) ∈
(topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol) |
56 | | difmbl 24243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℝ
∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖
(ℝ ∖ 𝑏)) ∈
dom vol) |
57 | 52, 55, 56 | sylancr 590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) ∈ dom
vol) |
58 | 51, 57 | eqeltrrd 2853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol) |
59 | 47, 58 | vtoclga 3492 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) → 𝑎 ∈ dom vol) |
60 | | mblvol 24230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 ∈ dom vol →
(vol‘𝑎) =
(vol*‘𝑎)) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑎) = (vol*‘𝑎)) |
62 | 46, 61 | sylan9eqr 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑧 = (vol*‘𝑎)) |
63 | 62 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 = (vol*‘𝑎)) |
64 | | inss1 4133 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
65 | | sstr 3900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑓)) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
66 | 64, 65 | mpan2 690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
67 | 66 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))) → 𝑎 ⊆ ∪ ran
((,) ∘ 𝑓)) |
68 | | ovolsscl 24186 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑎) ∈
ℝ) |
69 | 16, 68 | mp3an2 1446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈
ℝ) |
70 | 69 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘𝑎) ∈ ℝ) |
71 | 67, 70 | sylan2 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → (vol*‘𝑎) ∈ ℝ) |
72 | 63, 71 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)))) → 𝑧 ∈ ℝ) |
73 | 72 | rexlimdvaa 3209 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) → 𝑧 ∈ ℝ)) |
74 | 73 | abssdv 3973 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ) |
75 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑦 → (𝑧 = (vol‘𝑎) ↔ 𝑦 = (vol‘𝑎))) |
76 | 75 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑦 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)))) |
77 | 76 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑦 → (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)))) |
78 | 77 | ralab 3607 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑦 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
79 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 = (vol‘𝑎)) |
80 | 79, 61 | sylan9eqr 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 = (vol*‘𝑎)) |
81 | | ovolss 24185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
→ (vol*‘𝑎) ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
82 | 66, 16, 81 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → (vol*‘𝑎) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
83 | 82 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → (vol*‘𝑎) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
84 | 80, 83 | eqbrtrd 5054 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎))) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
85 | 84 | rexlimiva 3205 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (vol‘𝑎)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
86 | 78, 85 | mpgbir 1801 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑦 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
87 | | brralrspcev 5092 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) |
88 | 86, 87 | mpan2 690 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) |
89 | | retop 23463 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(topGen‘ran (,)) ∈ Top |
90 | | 0cld 21738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((topGen‘ran (,)) ∈ Top → ∅ ∈
(Clsd‘(topGen‘ran (,)))) |
91 | 89, 90 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∅
∈ (Clsd‘(topGen‘ran (,))) |
92 | | 0ss 4292 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) |
93 | | 0mbl 24239 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ∅
∈ dom vol |
94 | | mblvol 24230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
95 | 93, 94 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(vol‘∅) = (vol*‘∅) |
96 | | ovol0 24193 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(vol*‘∅) = 0 |
97 | 95, 96 | eqtr2i 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 =
(vol‘∅) |
98 | 92, 97 | pm3.2i 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (∅
⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 =
(vol‘∅)) |
99 | | sseq1 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = ∅ → (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ ∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
100 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = ∅ →
(vol‘𝑎) =
(vol‘∅)) |
101 | 100 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑎 = ∅ → (0 =
(vol‘𝑎) ↔ 0 =
(vol‘∅))) |
102 | 99, 101 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = ∅ → ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) ↔ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 =
(vol‘∅)))) |
103 | 102 | rspcev 3541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((∅
∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘∅))) →
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))) |
104 | 91, 98, 103 | mp2an 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)) |
105 | | c0ex 10673 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
V |
106 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 0 → (𝑧 = (vol‘𝑎) ↔ 0 = (vol‘𝑎))) |
107 | 106 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 0 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))) |
108 | 107 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 0 → (∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎)))) |
109 | 105, 108 | elab 3588 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (vol‘𝑎))) |
110 | 104, 109 | mpbir 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} |
111 | 110 | ne0ii 4236 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ |
112 | | suprcl 11637 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
113 | 111, 112 | mp3an2 1446 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
114 | 74, 88, 113 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∈
ℝ) |
115 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 = (vol‘𝑐)) |
116 | | eleq1w 2834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑏 = 𝑐 → (𝑏 ∈ dom vol ↔ 𝑐 ∈ dom vol)) |
117 | 116, 58 | vtoclga 3492 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → 𝑐 ∈ dom vol) |
118 | | mblvol 24230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ dom vol →
(vol‘𝑐) =
(vol*‘𝑐)) |
119 | 117, 118 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑐) = (vol*‘𝑐)) |
120 | 115, 119 | sylan9eqr 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑧 = (vol*‘𝑐)) |
121 | 120 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 = (vol*‘𝑐)) |
122 | | difss2 4039 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) |
123 | 122 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))) → 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) |
124 | | ovolsscl 24186 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑐) ∈
ℝ) |
125 | 16, 124 | mp3an2 1446 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈
ℝ) |
126 | 125 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘𝑐) ∈ ℝ) |
127 | 123, 126 | sylan2 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → (vol*‘𝑐) ∈ ℝ) |
128 | 121, 127 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)))) → 𝑧 ∈ ℝ) |
129 | 128 | rexlimdvaa 3209 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) → 𝑧 ∈ ℝ)) |
130 | 129 | abssdv 3973 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ) |
131 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 𝑦 → (𝑧 = (vol‘𝑐) ↔ 𝑦 = (vol‘𝑐))) |
132 | 131 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 𝑦 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐)))) |
133 | 132 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)))) |
134 | 133 | ralab 3607 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∀𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
135 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 = (vol‘𝑐)) |
136 | 135, 119 | sylan9eqr 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 = (vol*‘𝑐)) |
137 | | ovolss 24185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
→ (vol*‘𝑐) ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
138 | 122, 16, 137 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
139 | 138 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
140 | 136, 139 | eqbrtrd 5054 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐))) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
141 | 140 | rexlimiva 3205 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑦 = (vol‘𝑐)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
142 | 134, 141 | mpgbir 1801 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
∀𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
143 | | brralrspcev 5092 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) |
144 | 142, 143 | mpan2 690 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) |
145 | | 0ss 4292 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ∅
⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) |
146 | 145, 97 | pm3.2i 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (∅
⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 =
(vol‘∅)) |
147 | | sseq1 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = ∅ → (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ↔ ∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
148 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = ∅ →
(vol‘𝑐) =
(vol‘∅)) |
149 | 148 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = ∅ → (0 =
(vol‘𝑐) ↔ 0 =
(vol‘∅))) |
150 | 147, 149 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 = ∅ → ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)) ↔ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 =
(vol‘∅)))) |
151 | 150 | rspcev 3541 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((∅
∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘∅))) →
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐))) |
152 | 91, 146, 151 | mp2an 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐)) |
153 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 = 0 → (𝑧 = (vol‘𝑐) ↔ 0 = (vol‘𝑐))) |
154 | 153 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 = 0 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 0 =
(vol‘𝑐)))) |
155 | 154 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 = 0 → (∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐)))) |
156 | 105, 155 | elab 3588 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 0 = (vol‘𝑐))) |
157 | 152, 156 | mpbir 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} |
158 | 157 | ne0ii 4236 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ |
159 | | suprcl 11637 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
160 | 158, 159 | mp3an2 1446 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 ≤ 𝑥) → sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
161 | 130, 144,
160 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∈
ℝ) |
162 | 114, 161 | readdcld 10708 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈
ℝ) |
163 | 162 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ∈
ℝ) |
164 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
165 | 6 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ∈ ℝ) |
166 | 9 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ∈ ℝ) |
167 | | ovolsscl 24186 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
168 | 64, 16, 167 | mp3an12 1448 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
169 | 168 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ) |
170 | | difss 4037 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
171 | | ovolsscl 24186 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
172 | 170, 16, 171 | mp3an12 1448 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
173 | 172 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
174 | | ssrin 4138 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝑤 ∩ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴)) |
175 | 64, 16 | sstri 3901 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ |
176 | | ovolss 24185 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∩ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
177 | 174, 175,
176 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
178 | 177 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∩ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴))) |
179 | | ssdif 4045 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝑤 ∖ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) |
180 | 170, 16 | sstri 3901 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ |
181 | | ovolss 24185 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑤 ∖ 𝐴) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
182 | 179, 180,
181 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
183 | 182 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(𝑤 ∖ 𝐴)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
184 | 165, 166,
169, 173, 178, 183 | le2addd 11297 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
185 | | dfin4 4172 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) = (∪ ran ((,)
∘ 𝑓) ∖ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
186 | 185 | fveq2i 6661 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
187 | 186 | oveq1i 7160 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
188 | 184, 187 | breqtrdi 5073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
189 | 188 | adantlll 717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
190 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧
(vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) |
191 | 185 | sseq2i 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ 𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
192 | 191 | anbi1i 626 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))) |
193 | 192 | rexbii 3175 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ 𝑧 = (vol‘𝑎))) |
194 | 193 | abbii 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ 𝑧 = (vol‘𝑎))} |
195 | 194 | supeq1i 8944 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
196 | 16 | jctl 527 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → (∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ)) |
197 | 196 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ)) |
198 | 172, 180 | jctil 523 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)) |
199 | 198 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ)) |
200 | | ltso 10759 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ < Or
ℝ |
201 | 200 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → < Or
ℝ) |
202 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
203 | | vex 3413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑥 ∈ V |
204 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = 𝑥 → (𝑧 = (vol‘𝑐) ↔ 𝑥 = (vol‘𝑐))) |
205 | 204 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑥 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))) |
206 | 205 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑥 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)))) |
207 | 203, 206 | elab 3588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) |
208 | 16, 137 | mpan2 690 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
209 | 208 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
210 | 48 | cldss 21729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → 𝑐 ⊆ ℝ) |
211 | | ovolcl 24178 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ⊆ ℝ →
(vol*‘𝑐) ∈
ℝ*) |
212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) ∈
ℝ*) |
213 | | xrlenlt 10744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(((vol*‘𝑐)
∈ ℝ* ∧ (vol*‘∪ ran
((,) ∘ 𝑓)) ∈
ℝ*) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
214 | 212, 34, 213 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
215 | 214 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
216 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 = (vol‘𝑐) → 𝑥 = (vol‘𝑐)) |
217 | 216, 119 | sylan9eqr 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → 𝑥 = (vol*‘𝑐)) |
218 | | breq2 5036 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑥 = (vol*‘𝑐) → ((vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
219 | 218 | notbid 321 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑥 = (vol*‘𝑐) → (¬
(vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
220 | 217, 219 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 = (vol‘𝑐)) → (¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
221 | 220 | adantrl 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → (¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥 ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < (vol*‘𝑐))) |
222 | 215, 221 | bitr4d 285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ((vol*‘𝑐) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥)) |
223 | 209, 222 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐))) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
224 | 223 | rexlimiva 3205 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 = (vol‘𝑐)) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
225 | 207, 224 | sylbi 220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
226 | 225 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑥 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}) → ¬ (vol*‘∪ ran ((,) ∘ 𝑓)) < 𝑥) |
227 | | retopbas 23462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ran (,)
∈ TopBases |
228 | | bastg 21666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (ran (,)
∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) |
229 | 227, 228 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ran (,)
⊆ (topGen‘ran (,)) |
230 | 13, 229 | sstri 3901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ran ((,)
∘ 𝑓) ⊆
(topGen‘ran (,)) |
231 | | uniopn 21597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran
(,))) → ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,))) |
232 | 89, 230, 231 | mp2an 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,)) |
233 | | mblfinlem2 35375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) ∧ 𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐))) |
234 | 232, 233 | mp3an1 1445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐))) |
235 | 119 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (vol*‘𝑐) = (vol‘𝑐)) |
236 | 235 | anim1i 617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑐 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑥 < (vol*‘𝑐)) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) |
237 | 236 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → (𝑥 < (vol*‘𝑐) → ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐)))) |
238 | 237 | anim2d 614 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘𝑐) =
(vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))))) |
239 | | fvex 6671 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
(vol*‘𝑐)
∈ V |
240 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑦 = (vol*‘𝑐) → (𝑦 = (vol‘𝑐) ↔ (vol*‘𝑐) = (vol‘𝑐))) |
241 | 240 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = (vol*‘𝑐) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘𝑐) =
(vol‘𝑐)))) |
242 | | breq2 5036 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑦 = (vol*‘𝑐) → (𝑥 < 𝑦 ↔ 𝑥 < (vol*‘𝑐))) |
243 | 241, 242 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑦 = (vol*‘𝑐) → (((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘𝑐) =
(vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)))) |
244 | 239, 243 | spcev 3525 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘𝑐) = (vol‘𝑐)) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
245 | 244 | anasss 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘𝑐) = (vol‘𝑐) ∧ 𝑥 < (vol*‘𝑐))) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
246 | 238, 245 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑐 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦))) |
247 | 246 | reximia 3170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑥 < (vol*‘𝑐)) → ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
248 | 234, 247 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))∃𝑦((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
249 | | r19.41v 3265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
250 | 249 | exbii 1849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑦∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
251 | | rexcom4 3177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
252 | 131 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 = 𝑦 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)))) |
253 | 252 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑧 = 𝑦 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)))) |
254 | 253 | rexab 3609 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(∃𝑦 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦 ↔ ∃𝑦(∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦)) |
255 | 250, 251,
254 | 3bitr4i 306 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))∃𝑦((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = (vol‘𝑐)) ∧ 𝑥 < 𝑦) ↔ ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
256 | 248, 255 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
257 | 256 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (vol*‘∪ ran ((,) ∘ 𝑓)))) → ∃𝑦 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}𝑥 < 𝑦) |
258 | 201, 202,
226, 257 | eqsupd 8954 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘∪ ran ((,) ∘ 𝑓))) |
259 | 258 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
260 | 259 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
261 | | sseq1 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ↔
𝑎 ⊆ ∪ ran ((,) ∘ 𝑓))) |
262 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑐 = 𝑎 → (vol‘𝑐) = (vol‘𝑎)) |
263 | 262 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑧 = (vol‘𝑐) ↔ 𝑧 = (vol‘𝑎))) |
264 | 261, 263 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎)))) |
265 | 264 | cbvrexvw 3362 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))) |
266 | 265 | abbii 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))} |
267 | 266 | supeq1i 8944 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
sup({𝑧 ∣
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
268 | 260, 267 | eqtrdi 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )) |
269 | | sseq1 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ↔ 𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
270 | 269, 263 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑎)))) |
271 | 270 | cbvrexvw 3362 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))) |
272 | 271 | abbii 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} = {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))} |
273 | 272 | supeq1i 8944 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
sup({𝑧 ∣
∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) |
274 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
275 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑦 = 𝑧 → (𝑦 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑏))) |
276 | 275 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑦 = 𝑧 → ((𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)))) |
277 | 276 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)))) |
278 | | sseq1 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑐 → (𝑏 ⊆ 𝐴 ↔ 𝑐 ⊆ 𝐴)) |
279 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑏 = 𝑐 → (vol‘𝑏) = (vol‘𝑐)) |
280 | 279 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑏 = 𝑐 → (𝑧 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑐))) |
281 | 278, 280 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑏 = 𝑐 → ((𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)) ↔ (𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐)))) |
282 | 281 | cbvrexvw 3362 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))) |
283 | 277, 282 | bitrdi 290 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐)))) |
284 | 283 | cbvabv 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ {𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} = {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))} |
285 | 284 | supeq1i 8944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) |
286 | 285 | eqeq2i 2771 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((vol*‘𝐴) =
sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
287 | 286 | biimpi 219 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((vol*‘𝐴) =
sup({𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
288 | 287 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) |
289 | | mblfinlem3 35376 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) ∧ (vol*‘𝐴) = sup({𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ 𝐴 ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
290 | 197, 274,
260, 288, 289 | syl112anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
291 | 273, 290 | syl5reqr 2808 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < )) |
292 | | mblfinlem3 35376 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ))) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
293 | 197, 199,
268, 291, 292 | syl112anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
294 | 195, 293 | syl5eq 2805 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
295 | 294, 290 | oveq12d 7168 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
296 | 190, 295 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)))) |
297 | 189, 296 | breqtrrd 5060 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (sup({𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < ))) |
298 | | ne0i 4233 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} → {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅) |
299 | 110, 298 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ≠ ∅) |
300 | | ne0i 4233 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ∈
{𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} → {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅) |
301 | 157, 300 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))} ≠ ∅) |
302 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} = {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} |
303 | 74, 299, 88, 130, 301, 144, 302 | supadd 11645 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) = sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < )) |
304 | | reeanv 3285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
305 | | vex 3413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑢 ∈ V |
306 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑢 → (𝑧 = (vol‘𝑎) ↔ 𝑢 = (vol‘𝑎))) |
307 | 306 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑢 → ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ (𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))) |
308 | 307 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑢 → (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎)) ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)))) |
309 | 305, 308 | elab 3588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ↔ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎))) |
310 | | vex 3413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 𝑣 ∈ V |
311 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑧 = 𝑣 → (𝑧 = (vol‘𝑐) ↔ 𝑣 = (vol‘𝑐))) |
312 | 311 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑧 = 𝑣 → ((𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
313 | 312 | rexbidv 3221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 = 𝑣 → (∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐)) ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
314 | 310, 313 | elab 3588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ↔ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐))) |
315 | 309, 314 | anbi12i 629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) ↔ (∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
316 | 304, 315 | bitr4i 281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) ↔ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) |
317 | | an4 655 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ↔ ((𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐)))) |
318 | | oveq12 7159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐)) → (𝑢 + 𝑣) = ((vol‘𝑎) + (vol‘𝑐))) |
319 | 59 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ 𝑎 ∈ dom
vol) |
320 | 319 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → 𝑎 ∈ dom
vol) |
321 | 117 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ 𝑐 ∈ dom
vol) |
322 | 321 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → 𝑐 ∈ dom
vol) |
323 | | ss2in 4141 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) ⊆ ((∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
324 | 185 | ineq1i 4113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = ((∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
325 | | incom 4106 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∩ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) = ((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ∩ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
326 | | disjdif 4368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = ∅ |
327 | 324, 325,
326 | 3eqtri 2785 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) =
∅ |
328 | 323, 327 | sseqtrdi 3942 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) ⊆ ∅) |
329 | | ss0 4294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∩ 𝑐) ⊆ ∅ → (𝑎 ∩ 𝑐) = ∅) |
330 | 328, 329 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∩ 𝑐) = ∅) |
331 | 330 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) → (𝑎 ∩ 𝑐) = ∅) |
332 | 61 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘𝑎) =
(vol*‘𝑎)) |
333 | 332 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑎) =
(vol*‘𝑎)) |
334 | 66, 16 | jctir 524 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) → (𝑎 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ)) |
335 | 68 | 3expa 1115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑎) ∈
ℝ) |
336 | 334, 335 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑎) ∈
ℝ) |
337 | 336 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴)) → (vol*‘𝑎) ∈ ℝ) |
338 | 337 | ad2ant2r 746 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol*‘𝑎) ∈
ℝ) |
339 | 333, 338 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑎) ∈
ℝ) |
340 | 119 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘𝑐) =
(vol*‘𝑐)) |
341 | 340 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑐) =
(vol*‘𝑐)) |
342 | 122, 16 | jctir 524 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) → (𝑐 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ)) |
343 | 124 | 3expa 1115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (((𝑐 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ)
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑐) ∈
ℝ) |
344 | 342, 343 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑐) ∈
ℝ) |
345 | 344 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) → (vol*‘𝑐) ∈ ℝ) |
346 | 345 | ad2ant2rl 748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol*‘𝑐) ∈
ℝ) |
347 | 341, 346 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘𝑐) ∈
ℝ) |
348 | | volun 24245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol ∧ (𝑎 ∩ 𝑐) = ∅) ∧ ((vol‘𝑎) ∈ ℝ ∧
(vol‘𝑐) ∈
ℝ)) → (vol‘(𝑎 ∪ 𝑐)) = ((vol‘𝑎) + (vol‘𝑐))) |
349 | 320, 322,
331, 339, 347, 348 | syl32anc 1375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘(𝑎 ∪ 𝑐)) = ((vol‘𝑎) + (vol‘𝑐))) |
350 | | unmbl 24237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑎 ∈ dom vol ∧ 𝑐 ∈ dom vol) → (𝑎 ∪ 𝑐) ∈ dom vol) |
351 | 59, 117, 350 | syl2an 598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (𝑎 ∪ 𝑐) ∈ dom
vol) |
352 | | mblvol 24230 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑎 ∪ 𝑐) ∈ dom vol → (vol‘(𝑎 ∪ 𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
353 | 351, 352 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,))))
→ (vol‘(𝑎 ∪
𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
354 | 353 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
(vol‘(𝑎 ∪ 𝑐)) = (vol*‘(𝑎 ∪ 𝑐))) |
355 | 349, 354 | eqtr3d 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) →
((vol‘𝑎) +
(vol‘𝑐)) =
(vol*‘(𝑎 ∪ 𝑐))) |
356 | 318, 355 | sylan9eqr 2815 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐))) |
357 | | eqtr 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 = (𝑢 + 𝑣) ∧ (𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐))) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
358 | 357 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑢 + 𝑣) = (vol*‘(𝑎 ∪ 𝑐)) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
359 | 356, 358 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 = (vol*‘(𝑎 ∪ 𝑐))) |
360 | 66, 122 | anim12i 615 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓))) |
361 | | unss 4089 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑎 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑐 ⊆ ∪ ran
((,) ∘ 𝑓)) ↔
(𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓)) |
362 | 360, 361 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) → (𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓)) |
363 | | ovolss 24185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑎 ∪ 𝑐) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
364 | 362, 16, 363 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) →
(vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
365 | 364 | ad3antlr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → (vol*‘(𝑎 ∪ 𝑐)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
366 | 359, 365 | eqbrtrd 5054 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) ∧ 𝑦 = (𝑢 + 𝑣)) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
367 | 366 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
∧ (𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
368 | 367 | expl 461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
→ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ∧ (𝑢 = (vol‘𝑎) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
369 | 317, 368 | syl5bir 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑎 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑐 ∈ (Clsd‘(topGen‘ran (,)))))
→ (((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
370 | 369 | rexlimdvva 3218 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))((𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑢 = (vol‘𝑎)) ∧ (𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑣 = (vol‘𝑐))) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
371 | 316, 370 | syl5bir 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ((𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → (𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))))) |
372 | 371 | rexlimdvv 3217 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
373 | 372 | alrimiv 1928 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
374 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑦 → (𝑡 = (𝑢 + 𝑣) ↔ 𝑦 = (𝑢 + 𝑣))) |
375 | 374 | 2rexbidv 3224 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑦 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣))) |
376 | 375 | ralab 3607 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑦 ∈
{𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑦 = (𝑢 + 𝑣) → 𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
377 | 373, 376 | sylibr 237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
378 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 = (𝑢 + 𝑣)) |
379 | 74 | sselda 3892 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) → 𝑢 ∈ ℝ) |
380 | 130 | sselda 3892 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}) → 𝑣 ∈ ℝ) |
381 | | readdcl 10658 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ) |
382 | 379, 380,
381 | syl2an 598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ) |
383 | 382 | anandis 677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑢 + 𝑣) ∈ ℝ) |
384 | 383 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → (𝑢 + 𝑣) ∈ ℝ) |
385 | 378, 384 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) ∧ 𝑡 = (𝑢 + 𝑣)) → 𝑡 ∈ ℝ) |
386 | 385 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))})) → (𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ)) |
387 | 386 | rexlimdvva 3218 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) → 𝑡 ∈ ℝ)) |
388 | 387 | abssdv 3973 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ) |
389 | | 00id 10853 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (0 + 0) =
0 |
390 | 389 | eqcomi 2767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 0 = (0 +
0) |
391 | | rspceov 7197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0
∈ {𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))} ∧ 0 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))} ∧ 0 = (0 + 0)) → ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣)) |
392 | 110, 157,
390, 391 | mp3an 1458 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
∃𝑢 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) |
393 | | eqeq1 2762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 0 → (𝑡 = (𝑢 + 𝑣) ↔ 0 = (𝑢 + 𝑣))) |
394 | 393 | 2rexbidv 3224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 0 → (∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) ↔ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣))) |
395 | 105, 394 | spcev 3525 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∃𝑢 ∈
{𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}0 = (𝑢 + 𝑣) → ∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)) |
396 | 392, 395 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣) |
397 | | abn0 4277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ↔ ∃𝑡∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)) |
398 | 396, 397 | mpbir 234 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ |
399 | 398 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅) |
400 | | brralrspcev 5092 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ ∧
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) |
401 | 377, 400 | mpdan 686 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
∃𝑥 ∈ ℝ
∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) |
402 | 388, 399,
401 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ → ({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥)) |
403 | | suprleub 11643 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ⊆ ℝ ∧ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ 𝑥) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
404 | 402, 403 | mpancom 687 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑡 ∣
∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ↔ ∀𝑦 ∈ {𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}𝑦 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)))) |
405 | 377, 404 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
sup({𝑡 ∣ ∃𝑢 ∈ {𝑧 ∣ ∃𝑎 ∈ (Clsd‘(topGen‘ran
(,)))(𝑎 ⊆ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}∃𝑣 ∈ {𝑧 ∣ ∃𝑐 ∈ (Clsd‘(topGen‘ran
(,)))(𝑐 ⊆ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∧ 𝑧 = (vol‘𝑐))}𝑡 = (𝑢 + 𝑣)}, ℝ, < ) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
406 | 303, 405 | eqbrtrd 5054 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(sup({𝑧 ∣
∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
407 | 406 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (sup({𝑧 ∣ ∃𝑎 ∈
(Clsd‘(topGen‘ran (,)))(𝑎 ⊆ (∪ ran
((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (vol‘𝑎))}, ℝ, < ) + sup({𝑧 ∣ ∃𝑐 ∈
(Clsd‘(topGen‘ran (,)))(𝑐 ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ∧ 𝑧 = (vol‘𝑐))}, ℝ, < )) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
408 | 45, 163, 164, 297, 407 | letrd 10835 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
409 | 44, 408 | sylan2 595 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≠ +∞) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
410 | 33, 409 | pm2.61dane 3038 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
411 | 410 | adantlr 714 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
412 | | ssid 3914 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
((,) ∘ 𝑓) |
413 | 20 | ovollb 24179 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝑓) ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
414 | 412, 413 | mpan2 690 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (vol*‘∪ ran
((,) ∘ 𝑓)) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
415 | 414 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
416 | 12, 18, 27, 411, 415 | xrletrd 12596 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
417 | 416 | adantr 484 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
418 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) |
419 | 417, 418 | breqtrrd 5060 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) ∧ 𝑤 ⊆
∪ ran ((,) ∘ 𝑓)) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢) |
420 | 419 | expl 461 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → ((𝑤
⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
421 | 3, 420 | sylan2 595 |
. . . . . . . . . . 11
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) ∧ 𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)) →
((𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
422 | 421 | rexlimdva 3208 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
423 | 422 | ralrimivw 3114 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ∀𝑢
∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) →
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
424 | | eqeq1 2762 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑢 → (𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ↔ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))) |
425 | 424 | anbi2d 631 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑢 → ((𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < )))) |
426 | 425 | rexbidv 3221 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑢 → (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
)))) |
427 | 426 | ralrab 3608 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
{𝑣 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢 ↔ ∀𝑢 ∈ ℝ* (∃𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑢 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) →
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
428 | 423, 427 | sylibr 237 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ∀𝑢
∈ {𝑣 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢) |
429 | | ssrab2 3984 |
. . . . . . . . 9
⊢ {𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ⊆ ℝ* |
430 | 11 | adantl 485 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈
ℝ*) |
431 | | infxrgelb 12769 |
. . . . . . . . 9
⊢ (({𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} ⊆ ℝ* ∧
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ∈ ℝ*) →
(((vol*‘(𝑤 ∩
𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
432 | 429, 430,
431 | sylancr 590 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < ) ↔ ∀𝑢 ∈ {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))}
((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ 𝑢)) |
433 | 428, 432 | mpbird 260 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) |
434 | | eqid 2758 |
. . . . . . . . 9
⊢ {𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} = {𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
))} |
435 | 434 | ovolval 24173 |
. . . . . . . 8
⊢ (𝑤 ⊆ ℝ →
(vol*‘𝑤) = inf({𝑣 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
436 | 435 | ad2antrl 727 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → (vol*‘𝑤) = inf({𝑣 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝑤 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) |
437 | 433, 436 | breqtrrd 5060 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ (𝑤 ⊆ ℝ ∧
(vol*‘𝑤) ∈
ℝ)) → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) |
438 | 437 | expr 460 |
. . . . 5
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ⊆ ℝ) →
((vol*‘𝑤) ∈
ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
439 | 2, 438 | sylan2 595 |
. . . 4
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) ∧ 𝑤 ∈ 𝒫 ℝ)
→ ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
440 | 439 | ralrimiva 3113 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → ∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤))) |
441 | | ismbl2 24227 |
. . . . 5
⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧
∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)))) |
442 | 441 | baibr 540 |
. . . 4
⊢ (𝐴 ⊆ ℝ →
(∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol)) |
443 | 442 | ad2antrr 725 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → (∀𝑤 ∈ 𝒫
ℝ((vol*‘𝑤)
∈ ℝ → ((vol*‘(𝑤 ∩ 𝐴)) + (vol*‘(𝑤 ∖ 𝐴))) ≤ (vol*‘𝑤)) ↔ 𝐴 ∈ dom vol)) |
444 | 440, 443 | mpbid 235 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) → 𝐴 ∈ dom
vol) |
445 | 1, 444 | impbida 800 |
1
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝐴 ∈
dom vol ↔ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ))) |