Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismblfin Structured version   Visualization version   GIF version

Theorem ismblfin 36524
Description: Measurability in terms of inner and outer measure. Proposition 7 of [Viaclovsky8] p. 3. (Contributed by Brendan Leahy, 4-Mar-2018.) (Revised by Brendan Leahy, 28-Mar-2018.)
Assertion
Ref Expression
ismblfin ((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) β†’ (𝐴 ∈ dom vol ↔ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )))
Distinct variable group:   𝑦,𝑏,𝐴

Proof of Theorem ismblfin
Dummy variables π‘Ž 𝑐 𝑓 𝑑 𝑒 𝑣 𝑀 π‘₯ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mblfinlem4 36523 . 2 (((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ 𝐴 ∈ dom vol) β†’ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < ))
2 elpwi 4609 . . . . 5 (𝑀 ∈ 𝒫 ℝ β†’ 𝑀 βŠ† ℝ)
3 elmapi 8842 . . . . . . . . . . . 12 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
4 inss1 4228 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∩ 𝐴) βŠ† 𝑀
5 ovolsscl 25002 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∩ 𝐴) βŠ† 𝑀 ∧ 𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) β†’ (vol*β€˜(𝑀 ∩ 𝐴)) ∈ ℝ)
64, 5mp3an1 1448 . . . . . . . . . . . . . . . . . . 19 ((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) β†’ (vol*β€˜(𝑀 ∩ 𝐴)) ∈ ℝ)
7 difss 4131 . . . . . . . . . . . . . . . . . . . 20 (𝑀 βˆ– 𝐴) βŠ† 𝑀
8 ovolsscl 25002 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 βˆ– 𝐴) βŠ† 𝑀 ∧ 𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) β†’ (vol*β€˜(𝑀 βˆ– 𝐴)) ∈ ℝ)
97, 8mp3an1 1448 . . . . . . . . . . . . . . . . . . 19 ((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) β†’ (vol*β€˜(𝑀 βˆ– 𝐴)) ∈ ℝ)
106, 9readdcld 11242 . . . . . . . . . . . . . . . . . 18 ((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ∈ ℝ)
1110rexrd 11263 . . . . . . . . . . . . . . . . 17 ((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ∈ ℝ*)
1211ad3antlr 729 . . . . . . . . . . . . . . . 16 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ∈ ℝ*)
13 rncoss 5971 . . . . . . . . . . . . . . . . . . 19 ran ((,) ∘ 𝑓) βŠ† ran (,)
1413unissi 4917 . . . . . . . . . . . . . . . . . 18 βˆͺ ran ((,) ∘ 𝑓) βŠ† βˆͺ ran (,)
15 unirnioo 13425 . . . . . . . . . . . . . . . . . 18 ℝ = βˆͺ ran (,)
1614, 15sseqtrri 4019 . . . . . . . . . . . . . . . . 17 βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ
17 ovolcl 24994 . . . . . . . . . . . . . . . . 17 (βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ*)
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ*)
19 eqid 2732 . . . . . . . . . . . . . . . . . . 19 ((abs ∘ βˆ’ ) ∘ 𝑓) = ((abs ∘ βˆ’ ) ∘ 𝑓)
20 eqid 2732 . . . . . . . . . . . . . . . . . . 19 seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) = seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))
2119, 20ovolsf 24988 . . . . . . . . . . . . . . . . . 18 (𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)):β„•βŸΆ(0[,)+∞))
22 frn 6724 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)):β„•βŸΆ(0[,)+∞) β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) βŠ† (0[,)+∞))
23 icossxr 13408 . . . . . . . . . . . . . . . . . . 19 (0[,)+∞) βŠ† ℝ*
2422, 23sstrdi 3994 . . . . . . . . . . . . . . . . . 18 (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)):β„•βŸΆ(0[,)+∞) β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) βŠ† ℝ*)
25 supxrcl 13293 . . . . . . . . . . . . . . . . . 18 (ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) βŠ† ℝ* β†’ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2621, 24, 253syl 18 . . . . . . . . . . . . . . . . 17 (𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
2726ad2antlr 725 . . . . . . . . . . . . . . . 16 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
28 pnfge 13109 . . . . . . . . . . . . . . . . . . . . . 22 (((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ∈ ℝ* β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ +∞)
2911, 28syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ +∞)
3029ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = +∞) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ +∞)
31 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = +∞) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = +∞)
3230, 31breqtrrd 5176 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = +∞) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
3332adantlll 716 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = +∞) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
3416, 17ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ*
35 nltpnft 13142 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ* β†’ ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = +∞ ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < +∞))
3634, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = +∞ ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < +∞)
3736necon2abii 2991 . . . . . . . . . . . . . . . . . . . 20 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < +∞ ↔ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) β‰  +∞)
38 ovolge0 24997 . . . . . . . . . . . . . . . . . . . . . 22 (βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ β†’ 0 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
3916, 38ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))
40 0re 11215 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
41 xrre3 13149 . . . . . . . . . . . . . . . . . . . . . 22 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧ 0 ∈ ℝ) ∧ (0 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < +∞)) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ)
4234, 40, 41mpanl12 700 . . . . . . . . . . . . . . . . . . . . 21 ((0 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < +∞) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ)
4339, 42mpan 688 . . . . . . . . . . . . . . . . . . . 20 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < +∞ β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ)
4437, 43sylbir 234 . . . . . . . . . . . . . . . . . . 19 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) β‰  +∞ β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ)
4510ad3antlr 729 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ∈ ℝ)
46 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) β†’ 𝑧 = (volβ€˜π‘Ž))
47 eleq1w 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = π‘Ž β†’ (𝑏 ∈ dom vol ↔ π‘Ž ∈ dom vol))
48 uniretop 24278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ℝ = βˆͺ (topGenβ€˜ran (,))
4948cldss 22532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ 𝑏 βŠ† ℝ)
50 dfss4 4258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 βŠ† ℝ ↔ (ℝ βˆ– (ℝ βˆ– 𝑏)) = 𝑏)
5149, 50sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (ℝ βˆ– (ℝ βˆ– 𝑏)) = 𝑏)
52 rembl 25056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ℝ ∈ dom vol
5348cldopn 22534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑏 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (ℝ βˆ– 𝑏) ∈ (topGenβ€˜ran (,)))
54 opnmbl 25118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((ℝ βˆ– 𝑏) ∈ (topGenβ€˜ran (,)) β†’ (ℝ βˆ– 𝑏) ∈ dom vol)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑏 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (ℝ βˆ– 𝑏) ∈ dom vol)
56 difmbl 25059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((ℝ ∈ dom vol ∧ (ℝ βˆ– 𝑏) ∈ dom vol) β†’ (ℝ βˆ– (ℝ βˆ– 𝑏)) ∈ dom vol)
5752, 55, 56sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑏 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (ℝ βˆ– (ℝ βˆ– 𝑏)) ∈ dom vol)
5851, 57eqeltrrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ 𝑏 ∈ dom vol)
5947, 58vtoclga 3565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ π‘Ž ∈ dom vol)
60 mblvol 25046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘Ž ∈ dom vol β†’ (volβ€˜π‘Ž) = (vol*β€˜π‘Ž))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (volβ€˜π‘Ž) = (vol*β€˜π‘Ž))
6246, 61sylan9eqr 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))) β†’ 𝑧 = (vol*β€˜π‘Ž))
6362adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)))) β†’ 𝑧 = (vol*β€˜π‘Ž))
64 inss1 4228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) βŠ† βˆͺ ran ((,) ∘ 𝑓)
65 sstr 3990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓))
6664, 65mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) β†’ π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓))
6766ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))) β†’ π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓))
68 ovolsscl 25002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
6916, 68mp3an2 1449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
7069ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
7167, 70sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)))) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
7263, 71eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)))) β†’ 𝑧 ∈ ℝ)
7372rexlimdvaa 3156 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) β†’ 𝑧 ∈ ℝ))
7473abssdv 4065 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} βŠ† ℝ)
75 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 β†’ (𝑧 = (volβ€˜π‘Ž) ↔ 𝑦 = (volβ€˜π‘Ž)))
7675anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 β†’ ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž))))
7776rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 β†’ (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž))))
7877ralab 3687 . . . . . . . . . . . . . . . . . . . . . . . . 25 (βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ βˆ€π‘¦(βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž)) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
79 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž)) β†’ 𝑦 = (volβ€˜π‘Ž))
8079, 61sylan9eqr 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž))) β†’ 𝑦 = (vol*β€˜π‘Ž))
81 ovolss 25001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ) β†’ (vol*β€˜π‘Ž) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
8266, 16, 81sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) β†’ (vol*β€˜π‘Ž) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
8382ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž))) β†’ (vol*β€˜π‘Ž) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
8480, 83eqbrtrd 5170 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž))) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
8584rexlimiva 3147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑦 = (volβ€˜π‘Ž)) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
8678, 85mpgbir 1801 . . . . . . . . . . . . . . . . . . . . . . . 24 βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))
87 brralrspcev 5208 . . . . . . . . . . . . . . . . . . . . . . . 24 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}𝑦 ≀ π‘₯)
8886, 87mpan2 689 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}𝑦 ≀ π‘₯)
89 retop 24277 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (topGenβ€˜ran (,)) ∈ Top
90 0cld 22541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((topGenβ€˜ran (,)) ∈ Top β†’ βˆ… ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
9189, 90ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 βˆ… ∈ (Clsdβ€˜(topGenβ€˜ran (,)))
92 0ss 4396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)
93 0mbl 25055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 βˆ… ∈ dom vol
94 mblvol 25046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (βˆ… ∈ dom vol β†’ (volβ€˜βˆ…) = (vol*β€˜βˆ…))
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (volβ€˜βˆ…) = (vol*β€˜βˆ…)
96 ovol0 25009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (vol*β€˜βˆ…) = 0
9795, 96eqtr2i 2761 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 = (volβ€˜βˆ…)
9892, 97pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜βˆ…))
99 sseq1 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘Ž = βˆ… β†’ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)))
100 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (π‘Ž = βˆ… β†’ (volβ€˜π‘Ž) = (volβ€˜βˆ…))
101100eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘Ž = βˆ… β†’ (0 = (volβ€˜π‘Ž) ↔ 0 = (volβ€˜βˆ…)))
10299, 101anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘Ž = βˆ… β†’ ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜π‘Ž)) ↔ (βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜βˆ…))))
103102rspcev 3612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((βˆ… ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜βˆ…))) β†’ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜π‘Ž)))
10491, 98, 103mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜π‘Ž))
105 c0ex 11207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ V
106 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 0 β†’ (𝑧 = (volβ€˜π‘Ž) ↔ 0 = (volβ€˜π‘Ž)))
107106anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 0 β†’ ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜π‘Ž))))
108107rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 β†’ (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜π‘Ž))))
109105, 108elab 3668 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 0 = (volβ€˜π‘Ž)))
110104, 109mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}
111110ne0ii 4337 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} β‰  βˆ…
112 suprcl 12173 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} βŠ† ℝ ∧ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}𝑦 ≀ π‘₯) β†’ sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) ∈ ℝ)
113111, 112mp3an2 1449 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} βŠ† ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}𝑦 ≀ π‘₯) β†’ sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) ∈ ℝ)
11474, 88, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) ∈ ℝ)
115 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) β†’ 𝑧 = (volβ€˜π‘))
116 eleq1w 2816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 = 𝑐 β†’ (𝑏 ∈ dom vol ↔ 𝑐 ∈ dom vol))
117116, 58vtoclga 3565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ 𝑐 ∈ dom vol)
118 mblvol 25046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ dom vol β†’ (volβ€˜π‘) = (vol*β€˜π‘))
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (volβ€˜π‘) = (vol*β€˜π‘))
120115, 119sylan9eqr 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))) β†’ 𝑧 = (vol*β€˜π‘))
121120adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)))) β†’ 𝑧 = (vol*β€˜π‘))
122 difss2 4133 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) β†’ 𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓))
123122ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))) β†’ 𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓))
124 ovolsscl 25002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘) ∈ ℝ)
12516, 124mp3an2 1449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘) ∈ ℝ)
126125ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ (vol*β€˜π‘) ∈ ℝ)
127123, 126sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)))) β†’ (vol*β€˜π‘) ∈ ℝ)
128121, 127eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)))) β†’ 𝑧 ∈ ℝ)
129128rexlimdvaa 3156 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) β†’ 𝑧 ∈ ℝ))
130129abssdv 4065 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} βŠ† ℝ)
131 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑦 β†’ (𝑧 = (volβ€˜π‘) ↔ 𝑦 = (volβ€˜π‘)))
132131anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦 β†’ ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘))))
133132rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑦 β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘))))
134133ralab 3687 . . . . . . . . . . . . . . . . . . . . . . . . 25 (βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ βˆ€π‘¦(βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘)) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
135 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘)) β†’ 𝑦 = (volβ€˜π‘))
136135, 119sylan9eqr 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘))) β†’ 𝑦 = (vol*β€˜π‘))
137 ovolss 25001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ) β†’ (vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
138122, 16, 137sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) β†’ (vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
139138ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘))) β†’ (vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
140136, 139eqbrtrd 5170 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘))) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
141140rexlimiva 3147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑦 = (volβ€˜π‘)) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
142134, 141mpgbir 1801 . . . . . . . . . . . . . . . . . . . . . . . 24 βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))
143 brralrspcev 5208 . . . . . . . . . . . . . . . . . . . . . . . 24 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 ≀ π‘₯)
144142, 143mpan2 689 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 ≀ π‘₯)
145 0ss 4396 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)
146145, 97pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜βˆ…))
147 sseq1 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = βˆ… β†’ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ↔ βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
148 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = βˆ… β†’ (volβ€˜π‘) = (volβ€˜βˆ…))
149148eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = βˆ… β†’ (0 = (volβ€˜π‘) ↔ 0 = (volβ€˜βˆ…)))
150147, 149anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = βˆ… β†’ ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜π‘)) ↔ (βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜βˆ…))))
151150rspcev 3612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((βˆ… ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (βˆ… βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜βˆ…))) β†’ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜π‘)))
15291, 146, 151mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜π‘))
153 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 0 β†’ (𝑧 = (volβ€˜π‘) ↔ 0 = (volβ€˜π‘)))
154153anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 0 β†’ ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜π‘))))
155154rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 0 β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜π‘))))
156105, 155elab 3668 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 0 = (volβ€˜π‘)))
157152, 156mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}
158157ne0ii 4337 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} β‰  βˆ…
159 suprcl 12173 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} βŠ† ℝ ∧ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 ≀ π‘₯) β†’ sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) ∈ ℝ)
160158, 159mp3an2 1449 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} βŠ† ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 ≀ π‘₯) β†’ sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) ∈ ℝ)
161130, 144, 160syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) ∈ ℝ)
162114, 161readdcld 11242 . . . . . . . . . . . . . . . . . . . . 21 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )) ∈ ℝ)
163162adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )) ∈ ℝ)
164 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ)
1656ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(𝑀 ∩ 𝐴)) ∈ ℝ)
1669ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(𝑀 βˆ– 𝐴)) ∈ ℝ)
167 ovolsscl 25002 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
16864, 16, 167mp3an12 1451 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
169168adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)) ∈ ℝ)
170 difss 4131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) βŠ† βˆͺ ran ((,) ∘ 𝑓)
171 ovolsscl 25002 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∈ ℝ)
172170, 16, 171mp3an12 1451 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∈ ℝ)
173172adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∈ ℝ)
174 ssrin 4233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) β†’ (𝑀 ∩ 𝐴) βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴))
17564, 16sstri 3991 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) βŠ† ℝ
176 ovolss 25001 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∩ 𝐴) βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) βŠ† ℝ) β†’ (vol*β€˜(𝑀 ∩ 𝐴)) ≀ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)))
177174, 175, 176sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) β†’ (vol*β€˜(𝑀 ∩ 𝐴)) ≀ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)))
178177ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(𝑀 ∩ 𝐴)) ≀ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)))
179 ssdif 4139 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) β†’ (𝑀 βˆ– 𝐴) βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))
180170, 16sstri 3991 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) βŠ† ℝ
181 ovolss 25001 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 βˆ– 𝐴) βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) βŠ† ℝ) β†’ (vol*β€˜(𝑀 βˆ– 𝐴)) ≀ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
182179, 180, 181sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) β†’ (vol*β€˜(𝑀 βˆ– 𝐴)) ≀ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
183182ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(𝑀 βˆ– 𝐴)) ≀ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
184165, 166, 169, 173, 178, 183le2addd 11832 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ ((vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
185 dfin4 4267 . . . . . . . . . . . . . . . . . . . . . . . . 25 (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) = (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))
186185fveq2i 6894 . . . . . . . . . . . . . . . . . . . . . . . 24 (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)) = (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
187186oveq1i 7418 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)) + (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) = ((vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) + (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
188184, 187breqtrdi 5189 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ ((vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) + (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
189188adantlll 716 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ ((vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) + (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
190 simpll 765 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ ((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )))
191185sseq2i 4011 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ↔ π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
192191anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ 𝑧 = (volβ€˜π‘Ž)))
193192rexbii 3094 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ 𝑧 = (volβ€˜π‘Ž)))
194193abbii 2802 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} = {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ 𝑧 = (volβ€˜π‘Ž))}
195194supeq1i 9441 . . . . . . . . . . . . . . . . . . . . . . . 24 sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) = sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < )
19616jctl 524 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ))
197196adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ))
198172, 180jctil 520 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ ((βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) βŠ† ℝ ∧ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∈ ℝ))
199198adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ ((βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) βŠ† ℝ ∧ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∈ ℝ))
200 ltso 11293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 < Or ℝ
201200a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ < Or ℝ)
202 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ)
203 vex 3478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 π‘₯ ∈ V
204 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = π‘₯ β†’ (𝑧 = (volβ€˜π‘) ↔ π‘₯ = (volβ€˜π‘)))
205204anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = π‘₯ β†’ ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘)) ↔ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘))))
206205rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = π‘₯ β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘))))
207203, 206elab 3668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (π‘₯ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))} ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘)))
20816, 137mpan2 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) β†’ (vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
209208ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘))) β†’ (vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
21048cldss 22532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ 𝑐 βŠ† ℝ)
211 ovolcl 24994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 βŠ† ℝ β†’ (vol*β€˜π‘) ∈ ℝ*)
212210, 211syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (vol*β€˜π‘) ∈ ℝ*)
213 xrlenlt 11278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((vol*β€˜π‘) ∈ ℝ* ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ*) β†’ ((vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < (vol*β€˜π‘)))
214212, 34, 213sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ ((vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < (vol*β€˜π‘)))
215214adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘))) β†’ ((vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < (vol*β€˜π‘)))
216 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (π‘₯ = (volβ€˜π‘) β†’ π‘₯ = (volβ€˜π‘))
217216, 119sylan9eqr 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ π‘₯ = (volβ€˜π‘)) β†’ π‘₯ = (vol*β€˜π‘))
218 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (π‘₯ = (vol*β€˜π‘) β†’ ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯ ↔ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < (vol*β€˜π‘)))
219218notbid 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (π‘₯ = (vol*β€˜π‘) β†’ (Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯ ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < (vol*β€˜π‘)))
220217, 219syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ π‘₯ = (volβ€˜π‘)) β†’ (Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯ ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < (vol*β€˜π‘)))
221220adantrl 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘))) β†’ (Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯ ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < (vol*β€˜π‘)))
222215, 221bitr4d 281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘))) β†’ ((vol*β€˜π‘) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯))
223209, 222mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘))) β†’ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯)
224223rexlimiva 3147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ = (volβ€˜π‘)) β†’ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯)
225207, 224sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (π‘₯ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))} β†’ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯)
226225adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ π‘₯ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}) β†’ Β¬ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) < π‘₯)
227 retopbas 24276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ran (,) ∈ TopBases
228 bastg 22468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (ran (,) ∈ TopBases β†’ ran (,) βŠ† (topGenβ€˜ran (,)))
229227, 228ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ran (,) βŠ† (topGenβ€˜ran (,))
23013, 229sstri 3991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ran ((,) ∘ 𝑓) βŠ† (topGenβ€˜ran (,))
231 uniopn 22398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((topGenβ€˜ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) βŠ† (topGenβ€˜ran (,))) β†’ βˆͺ ran ((,) ∘ 𝑓) ∈ (topGenβ€˜ran (,)))
23289, 230, 231mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 βˆͺ ran ((,) ∘ 𝑓) ∈ (topGenβ€˜ran (,))
233 mblfinlem2 36521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((βˆͺ ran ((,) ∘ 𝑓) ∈ (topGenβ€˜ran (,)) ∧ π‘₯ ∈ ℝ ∧ π‘₯ < (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))) β†’ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ < (vol*β€˜π‘)))
234232, 233mp3an1 1448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((π‘₯ ∈ ℝ ∧ π‘₯ < (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))) β†’ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ < (vol*β€˜π‘)))
235119eqcomd 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (vol*β€˜π‘) = (volβ€˜π‘))
236235anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ π‘₯ < (vol*β€˜π‘)) β†’ ((vol*β€˜π‘) = (volβ€˜π‘) ∧ π‘₯ < (vol*β€˜π‘)))
237236ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ (π‘₯ < (vol*β€˜π‘) β†’ ((vol*β€˜π‘) = (volβ€˜π‘) ∧ π‘₯ < (vol*β€˜π‘))))
238237anim2d 612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ < (vol*β€˜π‘)) β†’ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ ((vol*β€˜π‘) = (volβ€˜π‘) ∧ π‘₯ < (vol*β€˜π‘)))))
239 fvex 6904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (vol*β€˜π‘) ∈ V
240 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 = (vol*β€˜π‘) β†’ (𝑦 = (volβ€˜π‘) ↔ (vol*β€˜π‘) = (volβ€˜π‘)))
241240anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = (vol*β€˜π‘) β†’ ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ↔ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ (vol*β€˜π‘) = (volβ€˜π‘))))
242 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = (vol*β€˜π‘) β†’ (π‘₯ < 𝑦 ↔ π‘₯ < (vol*β€˜π‘)))
243241, 242anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = (vol*β€˜π‘) β†’ (((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦) ↔ ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ (vol*β€˜π‘) = (volβ€˜π‘)) ∧ π‘₯ < (vol*β€˜π‘))))
244239, 243spcev 3596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ (vol*β€˜π‘) = (volβ€˜π‘)) ∧ π‘₯ < (vol*β€˜π‘)) β†’ βˆƒπ‘¦((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
245244anasss 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ ((vol*β€˜π‘) = (volβ€˜π‘) ∧ π‘₯ < (vol*β€˜π‘))) β†’ βˆƒπ‘¦((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
246238, 245syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))) β†’ ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ < (vol*β€˜π‘)) β†’ βˆƒπ‘¦((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦)))
247246reximia 3081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ π‘₯ < (vol*β€˜π‘)) β†’ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))βˆƒπ‘¦((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
248234, 247syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((π‘₯ ∈ ℝ ∧ π‘₯ < (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))) β†’ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))βˆƒπ‘¦((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
249 r19.41v 3188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦) ↔ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
250249exbii 1850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (βˆƒπ‘¦βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦) ↔ βˆƒπ‘¦(βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
251 rexcom4 3285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))βˆƒπ‘¦((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦) ↔ βˆƒπ‘¦βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
252131anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = 𝑦 β†’ ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘)) ↔ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘))))
253252rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = 𝑦 β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘))))
254253rexab 3690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (βˆƒπ‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}π‘₯ < 𝑦 ↔ βˆƒπ‘¦(βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦))
255250, 251, 2543bitr4i 302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))βˆƒπ‘¦((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (volβ€˜π‘)) ∧ π‘₯ < 𝑦) ↔ βˆƒπ‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}π‘₯ < 𝑦)
256248, 255sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((π‘₯ ∈ ℝ ∧ π‘₯ < (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))) β†’ βˆƒπ‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}π‘₯ < 𝑦)
257256adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘₯ ∈ ℝ ∧ π‘₯ < (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))) β†’ βˆƒπ‘¦ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}π‘₯ < 𝑦)
258201, 202, 226, 257eqsupd 9451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) = (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
259258eqcomd 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ))
260259adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ))
261 sseq1 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = π‘Ž β†’ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ↔ π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓)))
262 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑐 = π‘Ž β†’ (volβ€˜π‘) = (volβ€˜π‘Ž))
263262eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = π‘Ž β†’ (𝑧 = (volβ€˜π‘) ↔ 𝑧 = (volβ€˜π‘Ž)))
264261, 263anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = π‘Ž β†’ ((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘)) ↔ (π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘Ž))))
265264cbvrexvw 3235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘Ž)))
266265abbii 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))} = {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘Ž))}
267266supeq1i 9441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) = sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < )
268260, 267eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ))
269 simpll 765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ))
270 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = 𝑧 β†’ (𝑦 = (volβ€˜π‘) ↔ 𝑧 = (volβ€˜π‘)))
271270anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = 𝑧 β†’ ((𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘)) ↔ (𝑏 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))))
272271rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = 𝑧 β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))))
273 sseq1 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑐 β†’ (𝑏 βŠ† 𝐴 ↔ 𝑐 βŠ† 𝐴))
274 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑏 = 𝑐 β†’ (volβ€˜π‘) = (volβ€˜π‘))
275274eqeq2d 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑏 = 𝑐 β†’ (𝑧 = (volβ€˜π‘) ↔ 𝑧 = (volβ€˜π‘)))
276273, 275anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑏 = 𝑐 β†’ ((𝑏 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘)) ↔ (𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))))
277276cbvrexvw 3235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘)))
278272, 277bitrdi 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = 𝑧 β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))))
279278cbvabv 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 {𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))} = {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))}
280279supeq1i 9441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < ) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )
281280eqeq2i 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < ) ↔ (vol*β€˜π΄) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ))
282281biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < ) β†’ (vol*β€˜π΄) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ))
283282ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π΄) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ))
284 mblfinlem3 36522 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ (𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) ∧ (vol*β€˜π΄) = sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† 𝐴 ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ))) β†’ sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) = (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
285197, 269, 260, 283, 284syl112anc 1374 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) = (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
286 sseq1 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑐 = π‘Ž β†’ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ↔ π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
287286, 263anbi12d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 = π‘Ž β†’ ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))))
288287cbvrexvw 3235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)))
289288abbii 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} = {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}
290289supeq1i 9441 . . . . . . . . . . . . . . . . . . . . . . . . . 26 sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < ) = sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < )
291285, 290eqtr3di 2787 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) = sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ))
292 mblfinlem3 36522 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) ∧ ((βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) βŠ† ℝ ∧ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∈ ℝ) ∧ ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) = sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) ∧ (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) = sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ))) β†’ sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) = (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
293197, 199, 268, 291, 292syl112anc 1374 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) = (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
294195, 293eqtrid 2784 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) = (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
295294, 285oveq12d 7426 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )) = ((vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) + (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
296190, 295sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )) = ((vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) + (vol*β€˜(βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))))
297189, 296breqtrrd 5176 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )))
298 ne0i 4334 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} β†’ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} β‰  βˆ…)
299110, 298mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} β‰  βˆ…)
300 ne0i 4334 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} β†’ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} β‰  βˆ…)
301157, 300mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} β‰  βˆ…)
302 eqid 2732 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} = {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}
30374, 299, 88, 130, 301, 144, 302supadd 12181 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )) = sup({𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}, ℝ, < ))
304 reeanv 3226 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))) ↔ (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)) ∧ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))))
305 vex 3478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑒 ∈ V
306 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑒 β†’ (𝑧 = (volβ€˜π‘Ž) ↔ 𝑒 = (volβ€˜π‘Ž)))
307306anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑒 β†’ ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž))))
308307rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑒 β†’ (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž)) ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž))))
309305, 308elab 3668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ↔ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)))
310 vex 3478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑣 ∈ V
311 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = 𝑣 β†’ (𝑧 = (volβ€˜π‘) ↔ 𝑣 = (volβ€˜π‘)))
312311anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑣 β†’ ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))))
313312rexbidv 3178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑣 β†’ (βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘)) ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))))
314310, 313elab 3668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} ↔ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘)))
315309, 314anbi12i 627 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}) ↔ (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)) ∧ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))))
316304, 315bitr4i 277 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))) ↔ (𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}))
317 an4 654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ (𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘))) ↔ ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))))
318 oveq12 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘)) β†’ (𝑒 + 𝑣) = ((volβ€˜π‘Ž) + (volβ€˜π‘)))
31959adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,)))) β†’ π‘Ž ∈ dom vol)
320319ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ π‘Ž ∈ dom vol)
321117adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,)))) β†’ 𝑐 ∈ dom vol)
322321ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ 𝑐 ∈ dom vol)
323 ss2in 4236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) β†’ (π‘Ž ∩ 𝑐) βŠ† ((βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
324185ineq1i 4208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) = ((βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∩ (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))
325 incom 4201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∩ (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) = ((βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∩ (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)))
326 disjdif 4471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∩ (βˆͺ ran ((,) ∘ 𝑓) βˆ– (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) = βˆ…
327324, 325, 3263eqtri 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∩ (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) = βˆ…
328323, 327sseqtrdi 4032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) β†’ (π‘Ž ∩ 𝑐) βŠ† βˆ…)
329 ss0 4398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((π‘Ž ∩ 𝑐) βŠ† βˆ… β†’ (π‘Ž ∩ 𝑐) = βˆ…)
330328, 329syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) β†’ (π‘Ž ∩ 𝑐) = βˆ…)
331330adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (π‘Ž ∩ 𝑐) = βˆ…)
33261adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,)))) β†’ (volβ€˜π‘Ž) = (vol*β€˜π‘Ž))
333332ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (volβ€˜π‘Ž) = (vol*β€˜π‘Ž))
33466, 16jctir 521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) β†’ (π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ))
335683expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
336334, 335sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
337336ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴)) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
338337ad2ant2r 745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (vol*β€˜π‘Ž) ∈ ℝ)
339333, 338eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (volβ€˜π‘Ž) ∈ ℝ)
340119adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,)))) β†’ (volβ€˜π‘) = (vol*β€˜π‘))
341340ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (volβ€˜π‘) = (vol*β€˜π‘))
342122, 16jctir 521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) β†’ (𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ))
3431243expa 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘) ∈ ℝ)
344342, 343sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (vol*β€˜π‘) ∈ ℝ)
345344ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) β†’ (vol*β€˜π‘) ∈ ℝ)
346345ad2ant2rl 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (vol*β€˜π‘) ∈ ℝ)
347341, 346eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (volβ€˜π‘) ∈ ℝ)
348 volun 25061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((π‘Ž ∈ dom vol ∧ 𝑐 ∈ dom vol ∧ (π‘Ž ∩ 𝑐) = βˆ…) ∧ ((volβ€˜π‘Ž) ∈ ℝ ∧ (volβ€˜π‘) ∈ ℝ)) β†’ (volβ€˜(π‘Ž βˆͺ 𝑐)) = ((volβ€˜π‘Ž) + (volβ€˜π‘)))
349320, 322, 331, 339, 347, 348syl32anc 1378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (volβ€˜(π‘Ž βˆͺ 𝑐)) = ((volβ€˜π‘Ž) + (volβ€˜π‘)))
350 unmbl 25053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((π‘Ž ∈ dom vol ∧ 𝑐 ∈ dom vol) β†’ (π‘Ž βˆͺ 𝑐) ∈ dom vol)
35159, 117, 350syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,)))) β†’ (π‘Ž βˆͺ 𝑐) ∈ dom vol)
352 mblvol 25046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((π‘Ž βˆͺ 𝑐) ∈ dom vol β†’ (volβ€˜(π‘Ž βˆͺ 𝑐)) = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
353351, 352syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,)))) β†’ (volβ€˜(π‘Ž βˆͺ 𝑐)) = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
354353ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ (volβ€˜(π‘Ž βˆͺ 𝑐)) = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
355349, 354eqtr3d 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) β†’ ((volβ€˜π‘Ž) + (volβ€˜π‘)) = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
356318, 355sylan9eqr 2794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) ∧ (𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘))) β†’ (𝑒 + 𝑣) = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
357 eqtr 2755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 = (𝑒 + 𝑣) ∧ (𝑒 + 𝑣) = (vol*β€˜(π‘Ž βˆͺ 𝑐))) β†’ 𝑦 = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
358357ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑒 + 𝑣) = (vol*β€˜(π‘Ž βˆͺ 𝑐)) ∧ 𝑦 = (𝑒 + 𝑣)) β†’ 𝑦 = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
359356, 358sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) ∧ (𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘))) ∧ 𝑦 = (𝑒 + 𝑣)) β†’ 𝑦 = (vol*β€˜(π‘Ž βˆͺ 𝑐)))
36066, 122anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) β†’ (π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓)))
361 unss 4184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((π‘Ž βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑐 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ↔ (π‘Ž βˆͺ 𝑐) βŠ† βˆͺ ran ((,) ∘ 𝑓))
362360, 361sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) β†’ (π‘Ž βˆͺ 𝑐) βŠ† βˆͺ ran ((,) ∘ 𝑓))
363 ovolss 25001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((π‘Ž βˆͺ 𝑐) βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† ℝ) β†’ (vol*β€˜(π‘Ž βˆͺ 𝑐)) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
364362, 16, 363sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) β†’ (vol*β€˜(π‘Ž βˆͺ 𝑐)) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
365364ad3antlr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) ∧ (𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘))) ∧ 𝑦 = (𝑒 + 𝑣)) β†’ (vol*β€˜(π‘Ž βˆͺ 𝑐)) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
366359, 365eqbrtrd 5170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) ∧ (𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘))) ∧ 𝑦 = (𝑒 + 𝑣)) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
367366ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) ∧ (π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴))) ∧ (𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘))) β†’ (𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
368367expl 458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) β†’ (((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴)) ∧ (𝑒 = (volβ€˜π‘Ž) ∧ 𝑣 = (volβ€˜π‘))) β†’ (𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))))
369317, 368biimtrrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (π‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ 𝑐 ∈ (Clsdβ€˜(topGenβ€˜ran (,))))) β†’ (((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))) β†’ (𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))))
370369rexlimdvva 3211 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))((π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑒 = (volβ€˜π‘Ž)) ∧ (𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑣 = (volβ€˜π‘))) β†’ (𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))))
371316, 370biimtrrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ ((𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}) β†’ (𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))))
372371rexlimdvv 3210 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
373372alrimiv 1930 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ βˆ€π‘¦(βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
374 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 = 𝑦 β†’ (𝑑 = (𝑒 + 𝑣) ↔ 𝑦 = (𝑒 + 𝑣)))
3753742rexbidv 3219 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 = 𝑦 β†’ (βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣) ↔ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 = (𝑒 + 𝑣)))
376375ralab 3687 . . . . . . . . . . . . . . . . . . . . . . . 24 (βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ βˆ€π‘¦(βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑦 = (𝑒 + 𝑣) β†’ 𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
377373, 376sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
378 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))})) ∧ 𝑑 = (𝑒 + 𝑣)) β†’ 𝑑 = (𝑒 + 𝑣))
37974sselda 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}) β†’ 𝑒 ∈ ℝ)
380130sselda 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}) β†’ 𝑣 ∈ ℝ)
381 readdcl 11192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑒 ∈ ℝ ∧ 𝑣 ∈ ℝ) β†’ (𝑒 + 𝑣) ∈ ℝ)
382379, 380, 381syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}) ∧ ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))})) β†’ (𝑒 + 𝑣) ∈ ℝ)
383382anandis 676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))})) β†’ (𝑒 + 𝑣) ∈ ℝ)
384383adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))})) ∧ 𝑑 = (𝑒 + 𝑣)) β†’ (𝑒 + 𝑣) ∈ ℝ)
385378, 384eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))})) ∧ 𝑑 = (𝑒 + 𝑣)) β†’ 𝑑 ∈ ℝ)
386385ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ (𝑒 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 𝑣 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))})) β†’ (𝑑 = (𝑒 + 𝑣) β†’ 𝑑 ∈ ℝ))
387386rexlimdvva 3211 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣) β†’ 𝑑 ∈ ℝ))
388387abssdv 4065 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} βŠ† ℝ)
389 00id 11388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (0 + 0) = 0
390389eqcomi 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 0 = (0 + 0)
391 rspceov 7455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((0 ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))} ∧ 0 ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))} ∧ 0 = (0 + 0)) β†’ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}0 = (𝑒 + 𝑣))
392110, 157, 390, 391mp3an 1461 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}0 = (𝑒 + 𝑣)
393 eqeq1 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑑 = 0 β†’ (𝑑 = (𝑒 + 𝑣) ↔ 0 = (𝑒 + 𝑣)))
3943932rexbidv 3219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑 = 0 β†’ (βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣) ↔ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}0 = (𝑒 + 𝑣)))
395105, 394spcev 3596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}0 = (𝑒 + 𝑣) β†’ βˆƒπ‘‘βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣))
396392, 395ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 βˆƒπ‘‘βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)
397 abn0 4380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ({𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} β‰  βˆ… ↔ βˆƒπ‘‘βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣))
398396, 397mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} β‰  βˆ…
399398a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} β‰  βˆ…)
400 brralrspcev 5208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ ∧ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ π‘₯)
401377, 400mpdan 685 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ π‘₯)
402388, 399, 4013jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ ({𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} βŠ† ℝ ∧ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ π‘₯))
403 suprleub 12179 . . . . . . . . . . . . . . . . . . . . . . . 24 ((({𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} βŠ† ℝ ∧ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)} β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ π‘₯) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (sup({𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}, ℝ, < ) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
404402, 403mpancom 686 . . . . . . . . . . . . . . . . . . . . . . 23 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (sup({𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}, ℝ, < ) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ↔ βˆ€π‘¦ ∈ {𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}𝑦 ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓))))
405377, 404mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ sup({𝑑 ∣ βˆƒπ‘’ ∈ {𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}βˆƒπ‘£ ∈ {𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}𝑑 = (𝑒 + 𝑣)}, ℝ, < ) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
406303, 405eqbrtrd 5170 . . . . . . . . . . . . . . . . . . . . 21 ((vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ β†’ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
407406adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ (sup({𝑧 ∣ βˆƒπ‘Ž ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(π‘Ž βŠ† (βˆͺ ran ((,) ∘ 𝑓) ∩ 𝐴) ∧ 𝑧 = (volβ€˜π‘Ž))}, ℝ, < ) + sup({𝑧 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑐 βŠ† (βˆͺ ran ((,) ∘ 𝑓) βˆ– 𝐴) ∧ 𝑧 = (volβ€˜π‘))}, ℝ, < )) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
40845, 163, 164, 297, 407letrd 11370 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ∈ ℝ) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
40944, 408sylan2 593 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) β‰  +∞) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
41033, 409pm2.61dane 3029 . . . . . . . . . . . . . . . . 17 (((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
411410adantlr 713 . . . . . . . . . . . . . . . 16 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)))
412 ssid 4004 . . . . . . . . . . . . . . . . . 18 βˆͺ ran ((,) ∘ 𝑓) βŠ† βˆͺ ran ((,) ∘ 𝑓)
41320ovollb 24995 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ βˆͺ ran ((,) ∘ 𝑓) βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ≀ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
414412, 413mpan2 689 . . . . . . . . . . . . . . . . 17 (𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ≀ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
415414ad2antlr 725 . . . . . . . . . . . . . . . 16 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ (vol*β€˜βˆͺ ran ((,) ∘ 𝑓)) ≀ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
41612, 18, 27, 411, 415xrletrd 13140 . . . . . . . . . . . . . . 15 ((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
417416adantr 481 . . . . . . . . . . . . . 14 (((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
418 simpr 485 . . . . . . . . . . . . . 14 (((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
419417, 418breqtrrd 5176 . . . . . . . . . . . . 13 (((((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) ∧ 𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓)) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒)
420419expl 458 . . . . . . . . . . . 12 (((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ))) β†’ ((𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒))
4213, 420sylan2 593 . . . . . . . . . . 11 (((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) ∧ 𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)) β†’ ((𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒))
422421rexlimdva 3155 . . . . . . . . . 10 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ (βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒))
423422ralrimivw 3150 . . . . . . . . 9 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ βˆ€π‘’ ∈ ℝ* (βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒))
424 eqeq1 2736 . . . . . . . . . . . 12 (𝑣 = 𝑒 β†’ (𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )))
425424anbi2d 629 . . . . . . . . . . 11 (𝑣 = 𝑒 β†’ ((𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) ↔ (𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))))
426425rexbidv 3178 . . . . . . . . . 10 (𝑣 = 𝑒 β†’ (βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) ↔ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))))
427426ralrab 3689 . . . . . . . . 9 (βˆ€π‘’ ∈ {𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))} ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒 ↔ βˆ€π‘’ ∈ ℝ* (βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑒 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < )) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒))
428423, 427sylibr 233 . . . . . . . 8 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ βˆ€π‘’ ∈ {𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))} ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒)
429 ssrab2 4077 . . . . . . . . 9 {𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))} βŠ† ℝ*
43011adantl 482 . . . . . . . . 9 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ∈ ℝ*)
431 infxrgelb 13313 . . . . . . . . 9 (({𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))} βŠ† ℝ* ∧ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ∈ ℝ*) β†’ (((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ inf({𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ↔ βˆ€π‘’ ∈ {𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))} ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒))
432429, 430, 431sylancr 587 . . . . . . . 8 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ (((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ inf({𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ↔ βˆ€π‘’ ∈ {𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))} ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ 𝑒))
433428, 432mpbird 256 . . . . . . 7 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ inf({𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
434 eqid 2732 . . . . . . . . 9 {𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))} = {𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))}
435434ovolval 24989 . . . . . . . 8 (𝑀 βŠ† ℝ β†’ (vol*β€˜π‘€) = inf({𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
436435ad2antrl 726 . . . . . . 7 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ (vol*β€˜π‘€) = inf({𝑣 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝑀 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑣 = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
437433, 436breqtrrd 5176 . . . . . 6 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ (𝑀 βŠ† ℝ ∧ (vol*β€˜π‘€) ∈ ℝ)) β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜π‘€))
438437expr 457 . . . . 5 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ 𝑀 βŠ† ℝ) β†’ ((vol*β€˜π‘€) ∈ ℝ β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜π‘€)))
4392, 438sylan2 593 . . . 4 ((((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) ∧ 𝑀 ∈ 𝒫 ℝ) β†’ ((vol*β€˜π‘€) ∈ ℝ β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜π‘€)))
440439ralrimiva 3146 . . 3 (((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) β†’ βˆ€π‘€ ∈ 𝒫 ℝ((vol*β€˜π‘€) ∈ ℝ β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜π‘€)))
441 ismbl2 25043 . . . . 5 (𝐴 ∈ dom vol ↔ (𝐴 βŠ† ℝ ∧ βˆ€π‘€ ∈ 𝒫 ℝ((vol*β€˜π‘€) ∈ ℝ β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜π‘€))))
442441baibr 537 . . . 4 (𝐴 βŠ† ℝ β†’ (βˆ€π‘€ ∈ 𝒫 ℝ((vol*β€˜π‘€) ∈ ℝ β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜π‘€)) ↔ 𝐴 ∈ dom vol))
443442ad2antrr 724 . . 3 (((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) β†’ (βˆ€π‘€ ∈ 𝒫 ℝ((vol*β€˜π‘€) ∈ ℝ β†’ ((vol*β€˜(𝑀 ∩ 𝐴)) + (vol*β€˜(𝑀 βˆ– 𝐴))) ≀ (vol*β€˜π‘€)) ↔ 𝐴 ∈ dom vol))
444440, 443mpbid 231 . 2 (((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) ∧ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )) β†’ 𝐴 ∈ dom vol)
4451, 444impbida 799 1 ((𝐴 βŠ† ℝ ∧ (vol*β€˜π΄) ∈ ℝ) β†’ (𝐴 ∈ dom vol ↔ (vol*β€˜π΄) = sup({𝑦 ∣ βˆƒπ‘ ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑏 βŠ† 𝐴 ∧ 𝑦 = (volβ€˜π‘))}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βˆ– cdif 3945   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  βˆͺ cuni 4908   class class class wbr 5148   Or wor 5587   Γ— cxp 5674  dom cdm 5676  ran crn 5677   ∘ ccom 5680  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  supcsup 9434  infcinf 9435  β„cr 11108  0cc0 11109  1c1 11110   + caddc 11112  +∞cpnf 11244  β„*cxr 11246   < clt 11247   ≀ cle 11248   βˆ’ cmin 11443  β„•cn 12211  (,)cioo 13323  [,)cico 13325  seqcseq 13965  abscabs 15180  topGenctg 17382  Topctop 22394  TopBasesctb 22447  Clsdccld 22519  vol*covol 24978  volcvol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-omul 8470  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-acn 9936  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-rlim 15432  df-sum 15632  df-rest 17367  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-cld 22522  df-cmp 22890  df-conn 22915  df-ovol 24980  df-vol 24981
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator