MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difss2d Structured version   Visualization version   GIF version

Theorem difss2d 4119
Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4118. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
difss2d.1 (𝜑𝐴 ⊆ (𝐵𝐶))
Assertion
Ref Expression
difss2d (𝜑𝐴𝐵)

Proof of Theorem difss2d
StepHypRef Expression
1 difss2d.1 . 2 (𝜑𝐴 ⊆ (𝐵𝐶))
2 difss2 4118 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3928  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-ss 3948
This theorem is referenced by:  oacomf1olem  8581  numacn  10068  ramub1lem1  17051  ramub1lem2  17052  mreexexlem2d  17662  mreexexlem3d  17663  mreexexlem4d  17664  acsfiindd  18568  dpjidcl  20046  clsval2  22993  llycmpkgen2  23493  1stckgen  23497  alexsublem  23987  bcthlem3  25283  pmtrcnelor  33107  lfuhgr  35145  neibastop2lem  36383  pibt2  37440  eldioph2lem2  42759  limccog  45629  fourierdlem56  46171  fourierdlem95  46210
  Copyright terms: Public domain W3C validator