![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4132. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss2 4132 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3944 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-in 3954 df-ss 3964 |
This theorem is referenced by: oacomf1olem 8560 numacn 10040 ramub1lem1 16955 ramub1lem2 16956 mreexexlem2d 17585 mreexexlem3d 17586 mreexexlem4d 17587 acsfiindd 18502 dpjidcl 19922 clsval2 22545 llycmpkgen2 23045 1stckgen 23049 alexsublem 23539 bcthlem3 24834 pmtrcnelor 32239 lfuhgr 34096 neibastop2lem 35233 pibt2 36286 eldioph2lem2 41484 limccog 44322 fourierdlem56 44864 fourierdlem95 44903 |
Copyright terms: Public domain | W3C validator |