| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version | ||
| Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4101. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
| 2 | difss2 4101 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3911 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 |
| This theorem is referenced by: oacomf1olem 8528 numacn 10002 ramub1lem1 16997 ramub1lem2 16998 mreexexlem2d 17606 mreexexlem3d 17607 mreexexlem4d 17608 acsfiindd 18512 dpjidcl 19990 clsval2 22937 llycmpkgen2 23437 1stckgen 23441 alexsublem 23931 bcthlem3 25226 pmtrcnelor 33048 lfuhgr 35105 neibastop2lem 36348 pibt2 37405 eldioph2lem2 42749 limccog 45618 fourierdlem56 46160 fourierdlem95 46199 |
| Copyright terms: Public domain | W3C validator |