MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difss2d Structured version   Visualization version   GIF version

Theorem difss2d 4065
Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4064. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
difss2d.1 (𝜑𝐴 ⊆ (𝐵𝐶))
Assertion
Ref Expression
difss2d (𝜑𝐴𝐵)

Proof of Theorem difss2d
StepHypRef Expression
1 difss2d.1 . 2 (𝜑𝐴 ⊆ (𝐵𝐶))
2 difss2 4064 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3880  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900
This theorem is referenced by:  oacomf1olem  8357  numacn  9736  ramub1lem1  16655  ramub1lem2  16656  mreexexlem2d  17271  mreexexlem3d  17272  mreexexlem4d  17273  acsfiindd  18186  dpjidcl  19576  clsval2  22109  llycmpkgen2  22609  1stckgen  22613  alexsublem  23103  bcthlem3  24395  pmtrcnelor  31262  lfuhgr  32979  neibastop2lem  34476  pibt2  35515  eldioph2lem2  40499  limccog  43051  fourierdlem56  43593  fourierdlem95  43632
  Copyright terms: Public domain W3C validator