| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version | ||
| Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4088. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
| 2 | difss2 4088 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3899 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 |
| This theorem is referenced by: oacomf1olem 8479 numacn 9940 ramub1lem1 16938 ramub1lem2 16939 mreexexlem2d 17551 mreexexlem3d 17552 mreexexlem4d 17553 acsfiindd 18459 dpjidcl 19973 clsval2 22966 llycmpkgen2 23466 1stckgen 23470 alexsublem 23960 bcthlem3 25254 pmtrcnelor 33058 lfuhgr 35160 neibastop2lem 36400 pibt2 37457 eldioph2lem2 42800 limccog 45666 fourierdlem56 46206 fourierdlem95 46245 |
| Copyright terms: Public domain | W3C validator |