![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4148. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss2 4148 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3960 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-ss 3980 |
This theorem is referenced by: oacomf1olem 8601 numacn 10087 ramub1lem1 17060 ramub1lem2 17061 mreexexlem2d 17690 mreexexlem3d 17691 mreexexlem4d 17692 acsfiindd 18611 dpjidcl 20093 clsval2 23074 llycmpkgen2 23574 1stckgen 23578 alexsublem 24068 bcthlem3 25374 pmtrcnelor 33094 lfuhgr 35102 neibastop2lem 36343 pibt2 37400 eldioph2lem2 42749 limccog 45576 fourierdlem56 46118 fourierdlem95 46157 |
Copyright terms: Public domain | W3C validator |