Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4064. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss2 4064 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3880 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: oacomf1olem 8357 numacn 9736 ramub1lem1 16655 ramub1lem2 16656 mreexexlem2d 17271 mreexexlem3d 17272 mreexexlem4d 17273 acsfiindd 18186 dpjidcl 19576 clsval2 22109 llycmpkgen2 22609 1stckgen 22613 alexsublem 23103 bcthlem3 24395 pmtrcnelor 31262 lfuhgr 32979 neibastop2lem 34476 pibt2 35515 eldioph2lem2 40499 limccog 43051 fourierdlem56 43593 fourierdlem95 43632 |
Copyright terms: Public domain | W3C validator |