| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version | ||
| Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4087. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
| 2 | difss2 4087 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3895 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 |
| This theorem is referenced by: oacomf1olem 8487 numacn 9949 ramub1lem1 16942 ramub1lem2 16943 mreexexlem2d 17555 mreexexlem3d 17556 mreexexlem4d 17557 acsfiindd 18463 dpjidcl 19976 clsval2 22968 llycmpkgen2 23468 1stckgen 23472 alexsublem 23962 bcthlem3 25256 pmtrcnelor 33069 lfuhgr 35185 neibastop2lem 36427 pibt2 37484 eldioph2lem2 42881 limccog 45747 fourierdlem56 46287 fourierdlem95 46326 |
| Copyright terms: Public domain | W3C validator |