| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version | ||
| Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4118. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
| 2 | difss2 4118 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3928 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-ss 3948 |
| This theorem is referenced by: oacomf1olem 8581 numacn 10068 ramub1lem1 17051 ramub1lem2 17052 mreexexlem2d 17662 mreexexlem3d 17663 mreexexlem4d 17664 acsfiindd 18568 dpjidcl 20046 clsval2 22993 llycmpkgen2 23493 1stckgen 23497 alexsublem 23987 bcthlem3 25283 pmtrcnelor 33107 lfuhgr 35145 neibastop2lem 36383 pibt2 37440 eldioph2lem2 42759 limccog 45629 fourierdlem56 46171 fourierdlem95 46210 |
| Copyright terms: Public domain | W3C validator |