| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version | ||
| Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4091. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
| Ref | Expression |
|---|---|
| difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
| 2 | difss2 4091 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3902 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-ss 3922 |
| This theorem is referenced by: oacomf1olem 8489 numacn 9962 ramub1lem1 16956 ramub1lem2 16957 mreexexlem2d 17569 mreexexlem3d 17570 mreexexlem4d 17571 acsfiindd 18477 dpjidcl 19957 clsval2 22953 llycmpkgen2 23453 1stckgen 23457 alexsublem 23947 bcthlem3 25242 pmtrcnelor 33046 lfuhgr 35090 neibastop2lem 36333 pibt2 37390 eldioph2lem2 42734 limccog 45602 fourierdlem56 46144 fourierdlem95 46183 |
| Copyright terms: Public domain | W3C validator |