MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difss2d Structured version   Visualization version   GIF version

Theorem difss2d 4102
Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4101. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
difss2d.1 (𝜑𝐴 ⊆ (𝐵𝐶))
Assertion
Ref Expression
difss2d (𝜑𝐴𝐵)

Proof of Theorem difss2d
StepHypRef Expression
1 difss2d.1 . 2 (𝜑𝐴 ⊆ (𝐵𝐶))
2 difss2 4101 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
31, 2syl 17 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3911  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931
This theorem is referenced by:  oacomf1olem  8528  numacn  10002  ramub1lem1  16997  ramub1lem2  16998  mreexexlem2d  17606  mreexexlem3d  17607  mreexexlem4d  17608  acsfiindd  18512  dpjidcl  19990  clsval2  22937  llycmpkgen2  23437  1stckgen  23441  alexsublem  23931  bcthlem3  25226  pmtrcnelor  33048  lfuhgr  35105  neibastop2lem  36348  pibt2  37405  eldioph2lem2  42749  limccog  45618  fourierdlem56  46160  fourierdlem95  46199
  Copyright terms: Public domain W3C validator