![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difss2d | Structured version Visualization version GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4094. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2d.1 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) |
Ref | Expression |
---|---|
difss2d | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss2 4094 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3908 ⊆ wss 3911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3446 df-dif 3914 df-in 3918 df-ss 3928 |
This theorem is referenced by: oacomf1olem 8512 numacn 9990 ramub1lem1 16903 ramub1lem2 16904 mreexexlem2d 17530 mreexexlem3d 17531 mreexexlem4d 17532 acsfiindd 18447 dpjidcl 19842 clsval2 22417 llycmpkgen2 22917 1stckgen 22921 alexsublem 23411 bcthlem3 24706 pmtrcnelor 31991 lfuhgr 33768 neibastop2lem 34878 pibt2 35934 eldioph2lem2 41127 limccog 43947 fourierdlem56 44489 fourierdlem95 44528 |
Copyright terms: Public domain | W3C validator |