MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem2 Structured version   Visualization version   GIF version

Theorem bcthlem2 25266
Description: Lemma for bcth 25270. The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem2 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Distinct variable groups:   𝑘,𝑛,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑛,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑛,𝑟,𝑥,𝑧   𝜑,𝑘,𝑛,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘,𝑛)   𝑅(𝑧,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem bcthlem2
StepHypRef Expression
1 bcthlem.11 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
2 fvoveq1 7443 . . . . . . 7 (𝑘 = 𝑛 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑛 + 1)))
3 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
4 fveq2 6897 . . . . . . . 8 (𝑘 = 𝑛 → (𝑔𝑘) = (𝑔𝑛))
53, 4oveq12d 7438 . . . . . . 7 (𝑘 = 𝑛 → (𝑘𝐹(𝑔𝑘)) = (𝑛𝐹(𝑔𝑛)))
62, 5eleq12d 2823 . . . . . 6 (𝑘 = 𝑛 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛))))
76rspccva 3608 . . . . 5 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
81, 7sylan 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
9 bcthlem.9 . . . . . 6 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
109ffvelcdmda 7094 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑔𝑛) ∈ (𝑋 × ℝ+))
11 bcth.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
12 bcthlem.4 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
13 bcthlem.5 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
1411, 12, 13bcthlem1 25265 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑔𝑛) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
1514expr 456 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑔𝑛) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))))
1610, 15mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
178, 16mpbid 231 . . 3 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))
18 cmetmet 25227 . . . . . . . . . . . 12 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
1912, 18syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (Met‘𝑋))
20 metxmet 24253 . . . . . . . . . . 11 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝑋))
2211mopntop 24359 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2321, 22syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
24 xp1st 8025 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋)
25 xp2nd 8026 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ+)
2625rpxrd 13050 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)
2724, 26jca 511 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*))
28 blssm 24337 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
29283expb 1118 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
3021, 27, 29syl2an 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
31 df-ov 7423 . . . . . . . . . . . 12 ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
32 1st2nd2 8032 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑛 + 1)) = ⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
3332fveq2d 6901 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩))
3431, 33eqtr4id 2787 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3534adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3611mopnuni 24360 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3721, 36syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → 𝑋 = 𝐽)
3930, 35, 383sstr3d 4026 . . . . . . . . 9 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽)
40 eqid 2728 . . . . . . . . . 10 𝐽 = 𝐽
4140sscls 22973 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
4223, 39, 41syl2an2r 684 . . . . . . . 8 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
43 difss2 4132 . . . . . . . 8 (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
44 sstr2 3987 . . . . . . . 8 (((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4542, 43, 44syl2im 40 . . . . . . 7 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4645a1d 25 . . . . . 6 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))))
4746ex 412 . . . . 5 (𝜑 → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))))
48473impd 1346 . . . 4 (𝜑 → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4948adantr 480 . . 3 ((𝜑𝑛 ∈ ℕ) → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
5017, 49mpd 15 . 2 ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
5150ralrimiva 3143 1 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  cdif 3944  wss 3947  cop 4635   cuni 4908   class class class wbr 5148  {copab 5210   × cxp 5676  wf 6544  cfv 6548  (class class class)co 7420  cmpo 7422  1st c1st 7991  2nd c2nd 7992  1c1 11140   + caddc 11142  *cxr 11278   < clt 11279   / cdiv 11902  cn 12243  +crp 13007  ∞Metcxmet 21264  Metcmet 21265  ballcbl 21266  MetOpencmopn 21269  Topctop 22808  Clsdccld 22933  clsccl 22935  CMetccmet 25195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-topgen 17425  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22809  df-topon 22826  df-bases 22862  df-cld 22936  df-cls 22938  df-cmet 25198
This theorem is referenced by:  bcthlem3  25267  bcthlem4  25268
  Copyright terms: Public domain W3C validator