MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcthlem2 Structured version   Visualization version   GIF version

Theorem bcthlem2 24394
Description: Lemma for bcth 24398. The balls in the sequence form an inclusion chain. (Contributed by Mario Carneiro, 7-Jan-2014.)
Hypotheses
Ref Expression
bcth.2 𝐽 = (MetOpen‘𝐷)
bcthlem.4 (𝜑𝐷 ∈ (CMet‘𝑋))
bcthlem.5 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
bcthlem.6 (𝜑𝑀:ℕ⟶(Clsd‘𝐽))
bcthlem.7 (𝜑𝑅 ∈ ℝ+)
bcthlem.8 (𝜑𝐶𝑋)
bcthlem.9 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
bcthlem.10 (𝜑 → (𝑔‘1) = ⟨𝐶, 𝑅⟩)
bcthlem.11 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
Assertion
Ref Expression
bcthlem2 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Distinct variable groups:   𝑘,𝑛,𝑟,𝑥,𝑧   𝐶,𝑟,𝑥   𝑔,𝑘,𝑛,𝑟,𝑥,𝑧,𝐷   𝑔,𝐹,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝐽,𝑘,𝑛,𝑟,𝑥,𝑧   𝑔,𝑀,𝑘,𝑛,𝑟,𝑥,𝑧   𝜑,𝑘,𝑛,𝑟,𝑥,𝑧   𝑥,𝑅   𝑔,𝑋,𝑘,𝑛,𝑟,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑔)   𝐶(𝑧,𝑔,𝑘,𝑛)   𝑅(𝑧,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem bcthlem2
StepHypRef Expression
1 bcthlem.11 . . . . 5 (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)))
2 fvoveq1 7278 . . . . . . 7 (𝑘 = 𝑛 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑛 + 1)))
3 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
4 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑛 → (𝑔𝑘) = (𝑔𝑛))
53, 4oveq12d 7273 . . . . . . 7 (𝑘 = 𝑛 → (𝑘𝐹(𝑔𝑘)) = (𝑛𝐹(𝑔𝑛)))
62, 5eleq12d 2833 . . . . . 6 (𝑘 = 𝑛 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ↔ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛))))
76rspccva 3551 . . . . 5 ((∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
81, 7sylan 579 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)))
9 bcthlem.9 . . . . . 6 (𝜑𝑔:ℕ⟶(𝑋 × ℝ+))
109ffvelrnda 6943 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑔𝑛) ∈ (𝑋 × ℝ+))
11 bcth.2 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
12 bcthlem.4 . . . . . . 7 (𝜑𝐷 ∈ (CMet‘𝑋))
13 bcthlem.5 . . . . . . 7 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦ {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝑋𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀𝑘))))})
1411, 12, 13bcthlem1 24393 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑔𝑛) ∈ (𝑋 × ℝ+))) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
1514expr 456 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑔𝑛) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))))
1610, 15mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)))))
178, 16mpbid 231 . . 3 ((𝜑𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))))
18 cmetmet 24355 . . . . . . . . . . . 12 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
1912, 18syl 17 . . . . . . . . . . 11 (𝜑𝐷 ∈ (Met‘𝑋))
20 metxmet 23395 . . . . . . . . . . 11 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (∞Met‘𝑋))
2211mopntop 23501 . . . . . . . . . 10 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2321, 22syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
24 xp1st 7836 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋)
25 xp2nd 7837 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ+)
2625rpxrd 12702 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)
2724, 26jca 511 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*))
28 blssm 23479 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
29283expb 1118 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ ((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
3021, 27, 29syl2an 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋)
31 df-ov 7258 . . . . . . . . . . . 12 ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
32 1st2nd2 7843 . . . . . . . . . . . . 13 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑛 + 1)) = ⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩)
3332fveq2d 6760 . . . . . . . . . . . 12 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) = ((ball‘𝐷)‘⟨(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))⟩))
3431, 33eqtr4id 2798 . . . . . . . . . . 11 ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3534adantl 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))
3611mopnuni 23502 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3721, 36syl 17 . . . . . . . . . . 11 (𝜑𝑋 = 𝐽)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → 𝑋 = 𝐽)
3930, 35, 383sstr3d 3963 . . . . . . . . 9 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽)
40 eqid 2738 . . . . . . . . . 10 𝐽 = 𝐽
4140sscls 22115 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ 𝐽) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
4223, 39, 41syl2an2r 681 . . . . . . . 8 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))))
43 difss2 4064 . . . . . . . 8 (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
44 sstr2 3924 . . . . . . . 8 (((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4542, 43, 44syl2im 40 . . . . . . 7 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4645a1d 25 . . . . . 6 ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))))
4746ex 412 . . . . 5 (𝜑 → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → ((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))))
48473impd 1346 . . . 4 (𝜑 → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
4948adantr 480 . . 3 ((𝜑𝑛 ∈ ℕ) → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧ (2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔𝑛)) ∖ (𝑀𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛))))
5017, 49mpd 15 . 2 ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
5150ralrimiva 3107 1 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  wss 3883  cop 4564   cuni 4836   class class class wbr 5070  {copab 5132   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940   / cdiv 11562  cn 11903  +crp 12659  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500  Topctop 21950  Clsdccld 22075  clsccl 22077  CMetccmet 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-cls 22080  df-cmet 24326
This theorem is referenced by:  bcthlem3  24395  bcthlem4  24396
  Copyright terms: Public domain W3C validator