Proof of Theorem bcthlem2
Step | Hyp | Ref
| Expression |
1 | | bcthlem.11 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘))) |
2 | | fvoveq1 7298 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝑔‘(𝑘 + 1)) = (𝑔‘(𝑛 + 1))) |
3 | | id 22 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → 𝑘 = 𝑛) |
4 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (𝑔‘𝑘) = (𝑔‘𝑛)) |
5 | 3, 4 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝑘𝐹(𝑔‘𝑘)) = (𝑛𝐹(𝑔‘𝑛))) |
6 | 2, 5 | eleq12d 2833 |
. . . . . 6
⊢ (𝑘 = 𝑛 → ((𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ↔ (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)))) |
7 | 6 | rspccva 3560 |
. . . . 5
⊢
((∀𝑘 ∈
ℕ (𝑔‘(𝑘 + 1)) ∈ (𝑘𝐹(𝑔‘𝑘)) ∧ 𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛))) |
8 | 1, 7 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛))) |
9 | | bcthlem.9 |
. . . . . 6
⊢ (𝜑 → 𝑔:ℕ⟶(𝑋 ×
ℝ+)) |
10 | 9 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑔‘𝑛) ∈ (𝑋 ×
ℝ+)) |
11 | | bcth.2 |
. . . . . . 7
⊢ 𝐽 = (MetOpen‘𝐷) |
12 | | bcthlem.4 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
13 | | bcthlem.5 |
. . . . . . 7
⊢ 𝐹 = (𝑘 ∈ ℕ, 𝑧 ∈ (𝑋 × ℝ+) ↦
{〈𝑥, 𝑟〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) ∧ (𝑟 < (1 / 𝑘) ∧ ((cls‘𝐽)‘(𝑥(ball‘𝐷)𝑟)) ⊆ (((ball‘𝐷)‘𝑧) ∖ (𝑀‘𝑘))))}) |
14 | 11, 12, 13 | bcthlem1 24488 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ (𝑔‘𝑛) ∈ (𝑋 × ℝ+))) →
((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛))))) |
15 | 14 | expr 457 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑔‘𝑛) ∈ (𝑋 × ℝ+) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛)))))) |
16 | 10, 15 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑛𝐹(𝑔‘𝑛)) ↔ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛))))) |
17 | 8, 16 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛)))) |
18 | | cmetmet 24450 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
19 | 12, 18 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
20 | | metxmet 23487 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
22 | 11 | mopntop 23593 |
. . . . . . . . . 10
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
23 | 21, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ Top) |
24 | | xp1st 7863 |
. . . . . . . . . . . 12
⊢ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) →
(1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋) |
25 | | xp2nd 7864 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) →
(2nd ‘(𝑔‘(𝑛 + 1))) ∈
ℝ+) |
26 | 25 | rpxrd 12773 |
. . . . . . . . . . . 12
⊢ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) →
(2nd ‘(𝑔‘(𝑛 + 1))) ∈
ℝ*) |
27 | 24, 26 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) →
((1st ‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈
ℝ*)) |
28 | | blssm 23571 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*) →
((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋) |
29 | 28 | 3expb 1119 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ ((1st
‘(𝑔‘(𝑛 + 1))) ∈ 𝑋 ∧ (2nd ‘(𝑔‘(𝑛 + 1))) ∈ ℝ*)) →
((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋) |
30 | 21, 27, 29 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) →
((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) ⊆ 𝑋) |
31 | | df-ov 7278 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘〈(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))〉) |
32 | | 1st2nd2 7870 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) → (𝑔‘(𝑛 + 1)) = 〈(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))〉) |
33 | 32 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) →
((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) = ((ball‘𝐷)‘〈(1st ‘(𝑔‘(𝑛 + 1))), (2nd ‘(𝑔‘(𝑛 + 1)))〉)) |
34 | 31, 33 | eqtr4id 2797 |
. . . . . . . . . . 11
⊢ ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) →
((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) |
35 | 34 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) →
((1st ‘(𝑔‘(𝑛 + 1)))(ball‘𝐷)(2nd ‘(𝑔‘(𝑛 + 1)))) = ((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) |
36 | 11 | mopnuni 23594 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
37 | 21, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
38 | 37 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) → 𝑋 = ∪
𝐽) |
39 | 30, 35, 38 | 3sstr3d 3967 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) →
((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ∪
𝐽) |
40 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
41 | 40 | sscls 22207 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧
((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ∪
𝐽) →
((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))) |
42 | 23, 39, 41 | syl2an2r 682 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) →
((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1))))) |
43 | | difss2 4068 |
. . . . . . . 8
⊢
(((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛)) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |
44 | | sstr2 3928 |
. . . . . . . 8
⊢
(((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛)))) |
45 | 42, 43, 44 | syl2im 40 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) →
(((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛)))) |
46 | 45 | a1d 25 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+)) →
((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))))) |
47 | 46 | ex 413 |
. . . . 5
⊢ (𝜑 → ((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) →
((2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) → (((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛)) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛)))))) |
48 | 47 | 3impd 1347 |
. . . 4
⊢ (𝜑 → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛)))) |
49 | 48 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((𝑔‘(𝑛 + 1)) ∈ (𝑋 × ℝ+) ∧
(2nd ‘(𝑔‘(𝑛 + 1))) < (1 / 𝑛) ∧ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑔‘(𝑛 + 1)))) ⊆ (((ball‘𝐷)‘(𝑔‘𝑛)) ∖ (𝑀‘𝑛))) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛)))) |
50 | 17, 49 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |
51 | 50 | ralrimiva 3103 |
1
⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝑔‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝑔‘𝑛))) |