MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem1 Structured version   Visualization version   GIF version

Theorem sbthlem1 9128
Description: Lemma for sbth 9138. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem1
StepHypRef Expression
1 unissb 4945 . 2 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ∀𝑥𝐷 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
32eqabri 2884 . . . 4 (𝑥𝐷 ↔ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
4 difss2 4149 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴)
5 ssconb 4153 . . . . . . . 8 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴) → (𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ↔ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
65exbiri 811 . . . . . . 7 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
74, 6syl5 34 . . . . . 6 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
87pm2.43d 53 . . . . 5 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))))
98imp 406 . . . 4 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
103, 9sylbi 217 . . 3 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
11 elssuni 4943 . . . . 5 (𝑥𝐷𝑥 𝐷)
12 imass2 6125 . . . . 5 (𝑥 𝐷 → (𝑓𝑥) ⊆ (𝑓 𝐷))
13 sscon 4154 . . . . 5 ((𝑓𝑥) ⊆ (𝑓 𝐷) → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
1411, 12, 133syl 18 . . . 4 (𝑥𝐷 → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
15 imass2 6125 . . . 4 ((𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))
16 sscon 4154 . . . 4 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1714, 15, 163syl 18 . . 3 (𝑥𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1810, 17sstrd 4007 . 2 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
191, 18mprgbir 3067 1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  {cab 2713  Vcvv 3479  cdif 3961  wss 3964   cuni 4913  cima 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-xp 5696  df-cnv 5698  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703
This theorem is referenced by:  sbthlem2  9129  sbthlem3  9130  sbthlem5  9132
  Copyright terms: Public domain W3C validator