Proof of Theorem sbthlem1
Step | Hyp | Ref
| Expression |
1 | | unissb 4873 |
. 2
⊢ (∪ 𝐷
⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ↔ ∀𝑥 ∈ 𝐷 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
2 | | sbthlem.2 |
. . . . 5
⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
3 | 2 | abeq2i 2875 |
. . . 4
⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))) |
4 | | difss2 4068 |
. . . . . . 7
⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ 𝐴) |
5 | | ssconb 4072 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ 𝐴) → (𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) ↔ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))) |
6 | 5 | exbiri 808 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))))) |
7 | 4, 6 | syl5 34 |
. . . . . 6
⊢ (𝑥 ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))))) |
8 | 7 | pm2.43d 53 |
. . . . 5
⊢ (𝑥 ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))))) |
9 | 8 | imp 407 |
. . . 4
⊢ ((𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥)) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))) |
10 | 3, 9 | sylbi 216 |
. . 3
⊢ (𝑥 ∈ 𝐷 → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))))) |
11 | | elssuni 4871 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → 𝑥 ⊆ ∪ 𝐷) |
12 | | imass2 6010 |
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐷
→ (𝑓 “ 𝑥) ⊆ (𝑓 “ ∪ 𝐷)) |
13 | | sscon 4073 |
. . . . 5
⊢ ((𝑓 “ 𝑥) ⊆ (𝑓 “ ∪ 𝐷) → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) ⊆ (𝐵 ∖ (𝑓 “ 𝑥))) |
14 | 11, 12, 13 | 3syl 18 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) ⊆ (𝐵 ∖ (𝑓 “ 𝑥))) |
15 | | imass2 6010 |
. . . 4
⊢ ((𝐵 ∖ (𝑓 “ ∪ 𝐷)) ⊆ (𝐵 ∖ (𝑓 “ 𝑥)) → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) |
16 | | sscon 4073 |
. . . 4
⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
17 | 14, 15, 16 | 3syl 18 |
. . 3
⊢ (𝑥 ∈ 𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
18 | 10, 17 | sstrd 3931 |
. 2
⊢ (𝑥 ∈ 𝐷 → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
19 | 1, 18 | mprgbir 3079 |
1
⊢ ∪ 𝐷
⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |