MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem1 Structured version   Visualization version   GIF version

Theorem sbthlem1 9106
Description: Lemma for sbth 9116. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlem1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlem1
StepHypRef Expression
1 unissb 4921 . 2 ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ∀𝑥𝐷 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2 sbthlem.2 . . . . 5 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
32eqabri 2877 . . . 4 (𝑥𝐷 ↔ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
4 difss2 4120 . . . . . . 7 ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴)
5 ssconb 4124 . . . . . . . 8 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴) → (𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ↔ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)))
65exbiri 810 . . . . . . 7 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ 𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
74, 6syl5 34 . . . . . 6 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))))
87pm2.43d 53 . . . . 5 (𝑥𝐴 → ((𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))))
98imp 406 . . . 4 ((𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥)) → 𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
103, 9sylbi 217 . . 3 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))))
11 elssuni 4919 . . . . 5 (𝑥𝐷𝑥 𝐷)
12 imass2 6102 . . . . 5 (𝑥 𝐷 → (𝑓𝑥) ⊆ (𝑓 𝐷))
13 sscon 4125 . . . . 5 ((𝑓𝑥) ⊆ (𝑓 𝐷) → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
1411, 12, 133syl 18 . . . 4 (𝑥𝐷 → (𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)))
15 imass2 6102 . . . 4 ((𝐵 ∖ (𝑓 𝐷)) ⊆ (𝐵 ∖ (𝑓𝑥)) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))))
16 sscon 4125 . . . 4 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1714, 15, 163syl 18 . . 3 (𝑥𝐷 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓𝑥)))) ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1810, 17sstrd 3976 . 2 (𝑥𝐷𝑥 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
191, 18mprgbir 3057 1 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  Vcvv 3464  cdif 3930  wss 3933   cuni 4889  cima 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680
This theorem is referenced by:  sbthlem2  9107  sbthlem3  9108  sbthlem5  9110
  Copyright terms: Public domain W3C validator