Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifb | Structured version Visualization version GIF version |
Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
disjdifb | ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4210 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) | |
2 | disjdif 4410 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
3 | 2 | difeq1i 4057 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) = (∅ ∖ 𝐵) |
4 | 0dif 4340 | . 2 ⊢ (∅ ∖ 𝐵) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2771 | 1 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∖ cdif 3888 ∩ cin 3890 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 |
This theorem is referenced by: iscnrm3r 46194 |
Copyright terms: Public domain | W3C validator |