![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifb | Structured version Visualization version GIF version |
Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
disjdifb | ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4272 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) | |
2 | disjdif 4472 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
3 | 2 | difeq1i 4119 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) = (∅ ∖ 𝐵) |
4 | 0dif 4402 | . 2 ⊢ (∅ ∖ 𝐵) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2765 | 1 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∖ cdif 3946 ∩ cin 3948 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 |
This theorem is referenced by: iscnrm3r 47581 |
Copyright terms: Public domain | W3C validator |