Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdifb Structured version   Visualization version   GIF version

Theorem disjdifb 48802
Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
disjdifb ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅

Proof of Theorem disjdifb
StepHypRef Expression
1 indif1 4248 . 2 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐴 ∩ (𝐵𝐴)) ∖ 𝐵)
2 disjdif 4438 . . 3 (𝐴 ∩ (𝐵𝐴)) = ∅
32difeq1i 4088 . 2 ((𝐴 ∩ (𝐵𝐴)) ∖ 𝐵) = (∅ ∖ 𝐵)
4 0dif 4371 . 2 (∅ ∖ 𝐵) = ∅
51, 3, 43eqtri 2757 1 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3914  cin 3916  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-nul 4300
This theorem is referenced by:  iscnrm3r  48940
  Copyright terms: Public domain W3C validator