![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifb | Structured version Visualization version GIF version |
Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
disjdifb | ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4301 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) | |
2 | disjdif 4495 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
3 | 2 | difeq1i 4145 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) = (∅ ∖ 𝐵) |
4 | 0dif 4428 | . 2 ⊢ (∅ ∖ 𝐵) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2772 | 1 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 |
This theorem is referenced by: iscnrm3r 48628 |
Copyright terms: Public domain | W3C validator |