Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifb | Structured version Visualization version GIF version |
Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.) |
Ref | Expression |
---|---|
disjdifb | ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4211 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) | |
2 | disjdif 4411 | . . 3 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
3 | 2 | difeq1i 4059 | . 2 ⊢ ((𝐴 ∩ (𝐵 ∖ 𝐴)) ∖ 𝐵) = (∅ ∖ 𝐵) |
4 | 0dif 4341 | . 2 ⊢ (∅ ∖ 𝐵) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2768 | 1 ⊢ ((𝐴 ∖ 𝐵) ∩ (𝐵 ∖ 𝐴)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3889 ∩ cin 3891 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3333 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 |
This theorem is referenced by: iscnrm3r 46486 |
Copyright terms: Public domain | W3C validator |