Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdifb Structured version   Visualization version   GIF version

Theorem disjdifb 47750
Description: Relative complement is anticommutative regarding intersection. (Contributed by Zhi Wang, 5-Sep-2024.)
Assertion
Ref Expression
disjdifb ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅

Proof of Theorem disjdifb
StepHypRef Expression
1 indif1 4266 . 2 ((𝐴𝐵) ∩ (𝐵𝐴)) = ((𝐴 ∩ (𝐵𝐴)) ∖ 𝐵)
2 disjdif 4466 . . 3 (𝐴 ∩ (𝐵𝐴)) = ∅
32difeq1i 4113 . 2 ((𝐴 ∩ (𝐵𝐴)) ∖ 𝐵) = (∅ ∖ 𝐵)
4 0dif 4396 . 2 (∅ ∖ 𝐵) = ∅
51, 3, 43eqtri 2758 1 ((𝐴𝐵) ∩ (𝐵𝐴)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cdif 3940  cin 3942  c0 4317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-in 3950  df-ss 3960  df-nul 4318
This theorem is referenced by:  iscnrm3r  47837
  Copyright terms: Public domain W3C validator