MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dif Structured version   Visualization version   GIF version

Theorem 0dif 4401
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
0dif (∅ ∖ 𝐴) = ∅

Proof of Theorem 0dif
StepHypRef Expression
1 difss 4131 . 2 (∅ ∖ 𝐴) ⊆ ∅
2 ss0 4398 . 2 ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅)
31, 2ax-mp 5 1 (∅ ∖ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3945  wss 3948  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323
This theorem is referenced by:  symdif0  5088  fresaun  6762  dffv2  6986  ablfac1eulem  19990  itgioo  25665  newval  27695  nbgr0vtx  29046  imadifxp  32265  sibf0  33797  ballotlemfval0  33958  ballotlemgun  33987  satf0  34827  mdvval  34959  fzdifsuc2  44479  ibliooicc  45146  disjdifb  47656
  Copyright terms: Public domain W3C validator