Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version |
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4062 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
2 | ss0 4329 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: symdif0 5010 fresaun 6629 dffv2 6845 ablfac1eulem 19590 itgioo 24885 nbgr0vtx 27626 imadifxp 30841 sibf0 32201 ballotlemfval0 32362 ballotlemgun 32391 satf0 33234 mdvval 33366 newval 33966 fzdifsuc2 42739 ibliooicc 43402 disjdifb 46043 |
Copyright terms: Public domain | W3C validator |