MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dif Structured version   Visualization version   GIF version

Theorem 0dif 4368
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
0dif (∅ ∖ 𝐴) = ∅

Proof of Theorem 0dif
StepHypRef Expression
1 difss 4099 . 2 (∅ ∖ 𝐴) ⊆ ∅
2 ss0 4365 . 2 ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅)
31, 2ax-mp 5 1 (∅ ∖ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3911  wss 3914  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931  df-nul 4297
This theorem is referenced by:  symdif0  5049  fresaun  6731  dffv2  6956  ablfac1eulem  20004  itgioo  25717  newval  27763  imadifxp  32530  sibf0  34325  ballotlemfval0  34487  ballotlemgun  34516  satf0  35359  mdvval  35491  fzdifsuc2  45308  ibliooicc  45969  disjdifb  48798
  Copyright terms: Public domain W3C validator