| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version | ||
| Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| 0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4086 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
| 2 | ss0 4352 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 df-nul 4284 |
| This theorem is referenced by: symdif0 5033 fresaun 6694 dffv2 6917 nulchn 18525 chnccat 18532 ablfac1eulem 19987 itgioo 25745 newval 27797 imadifxp 32579 sibf0 34345 ballotlemfval0 34507 ballotlemgun 34536 satf0 35414 mdvval 35546 fzdifsuc2 45357 ibliooicc 46015 disjdifb 48847 |
| Copyright terms: Public domain | W3C validator |