| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version | ||
| Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| 0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4085 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
| 2 | ss0 4351 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: symdif0 5037 fresaun 6701 dffv2 6925 nulchn 18529 chnccat 18536 ablfac1eulem 19990 itgioo 25747 newval 27799 imadifxp 32585 sibf0 34370 ballotlemfval0 34532 ballotlemgun 34561 satf0 35439 mdvval 35571 fzdifsuc2 45438 ibliooicc 46096 disjdifb 48937 |
| Copyright terms: Public domain | W3C validator |