![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version |
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4146 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
2 | ss0 4408 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-ss 3980 df-nul 4340 |
This theorem is referenced by: symdif0 5090 fresaun 6780 dffv2 7004 ablfac1eulem 20107 itgioo 25866 newval 27909 imadifxp 32621 sibf0 34316 ballotlemfval0 34477 ballotlemgun 34506 satf0 35357 mdvval 35489 fzdifsuc2 45261 ibliooicc 45927 disjdifb 48658 |
Copyright terms: Public domain | W3C validator |