![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version |
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4131 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
2 | ss0 4398 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 |
This theorem is referenced by: symdif0 5088 fresaun 6762 dffv2 6986 ablfac1eulem 19990 itgioo 25665 newval 27695 nbgr0vtx 29046 imadifxp 32265 sibf0 33797 ballotlemfval0 33958 ballotlemgun 33987 satf0 34827 mdvval 34959 fzdifsuc2 44479 ibliooicc 45146 disjdifb 47656 |
Copyright terms: Public domain | W3C validator |