| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version | ||
| Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| 0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4102 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
| 2 | ss0 4368 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: symdif0 5052 fresaun 6734 dffv2 6959 ablfac1eulem 20011 itgioo 25724 newval 27770 imadifxp 32537 sibf0 34332 ballotlemfval0 34494 ballotlemgun 34523 satf0 35366 mdvval 35498 fzdifsuc2 45315 ibliooicc 45976 disjdifb 48802 |
| Copyright terms: Public domain | W3C validator |