MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0dif Structured version   Visualization version   GIF version

Theorem 0dif 4332
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
0dif (∅ ∖ 𝐴) = ∅

Proof of Theorem 0dif
StepHypRef Expression
1 difss 4062 . 2 (∅ ∖ 𝐴) ⊆ ∅
2 ss0 4329 . 2 ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅)
31, 2ax-mp 5 1 (∅ ∖ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3880  wss 3883  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  symdif0  5010  fresaun  6629  dffv2  6845  ablfac1eulem  19590  itgioo  24885  nbgr0vtx  27626  imadifxp  30841  sibf0  32201  ballotlemfval0  32362  ballotlemgun  32391  satf0  33234  mdvval  33366  newval  33966  fzdifsuc2  42739  ibliooicc  43402  disjdifb  46043
  Copyright terms: Public domain W3C validator