![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0dif | Structured version Visualization version GIF version |
Description: The difference between the empty set and a class. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
0dif | ⊢ (∅ ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4159 | . 2 ⊢ (∅ ∖ 𝐴) ⊆ ∅ | |
2 | ss0 4425 | . 2 ⊢ ((∅ ∖ 𝐴) ⊆ ∅ → (∅ ∖ 𝐴) = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∅ ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: symdif0 5108 fresaun 6792 dffv2 7017 ablfac1eulem 20116 itgioo 25871 newval 27912 imadifxp 32623 sibf0 34299 ballotlemfval0 34460 ballotlemgun 34489 satf0 35340 mdvval 35472 fzdifsuc2 45225 ibliooicc 45892 disjdifb 48541 |
Copyright terms: Public domain | W3C validator |