MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif1 Structured version   Visualization version   GIF version

Theorem indif1 4301
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif1
StepHypRef Expression
1 indif2 4300 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐵𝐴) ∖ 𝐶)
2 incom 4230 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
3 incom 4230 . . 3 (𝐵𝐴) = (𝐴𝐵)
43difeq1i 4145 . 2 ((𝐵𝐴) ∖ 𝐶) = ((𝐴𝐵) ∖ 𝐶)
51, 2, 43eqtr3i 2776 1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983
This theorem is referenced by:  resdifcom  6028  resdmdfsn  6060  hartogslem1  9611  fpwwe2  10712  leiso  14508  basdif0  22981  tgdif0  23020  kqdisj  23761  trufil  23939  difininv  32547  gtiso  32712  dfon4  35857  disjdifb  48541
  Copyright terms: Public domain W3C validator