MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif1 Structured version   Visualization version   GIF version

Theorem indif1 4245
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif1
StepHypRef Expression
1 indif2 4244 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐵𝐴) ∖ 𝐶)
2 incom 4172 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
3 incom 4172 . . 3 (𝐵𝐴) = (𝐴𝐵)
43difeq1i 4085 . 2 ((𝐵𝐴) ∖ 𝐶) = ((𝐴𝐵) ∖ 𝐶)
51, 2, 43eqtr3i 2760 1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3911  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-in 3921
This theorem is referenced by:  resdifcom  5969  resdmdfsn  6002  hartogslem1  9495  fpwwe2  10596  leiso  14424  basdif0  22840  tgdif0  22879  kqdisj  23619  trufil  23797  difininv  32446  gtiso  32624  dfon4  35881  disjdifb  48798
  Copyright terms: Public domain W3C validator