| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indif1 | Structured version Visualization version GIF version | ||
| Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| indif1 | ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif2 4232 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
| 2 | incom 4160 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) ∩ 𝐵) | |
| 3 | incom 4160 | . . 3 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 4 | 3 | difeq1i 4073 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∖ 𝐶) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| 5 | 1, 2, 4 | 3eqtr3i 2760 | 1 ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3900 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-in 3910 |
| This theorem is referenced by: resdifcom 5949 resdmdfsn 5982 hartogslem1 9434 fpwwe2 10537 leiso 14366 basdif0 22838 tgdif0 22877 kqdisj 23617 trufil 23795 difininv 32461 gtiso 32644 dfon4 35877 disjdifb 48804 |
| Copyright terms: Public domain | W3C validator |