| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indif1 | Structured version Visualization version GIF version | ||
| Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| indif1 | ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif2 4247 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
| 2 | incom 4175 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) ∩ 𝐵) | |
| 3 | incom 4175 | . . 3 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 4 | 3 | difeq1i 4088 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∖ 𝐶) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| 5 | 1, 2, 4 | 3eqtr3i 2761 | 1 ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 |
| This theorem is referenced by: resdifcom 5972 resdmdfsn 6005 hartogslem1 9502 fpwwe2 10603 leiso 14431 basdif0 22847 tgdif0 22886 kqdisj 23626 trufil 23804 difininv 32453 gtiso 32631 dfon4 35888 disjdifb 48802 |
| Copyright terms: Public domain | W3C validator |