| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indif1 | Structured version Visualization version GIF version | ||
| Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| indif1 | ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif2 4228 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐵 ∩ 𝐴) ∖ 𝐶) | |
| 2 | incom 4156 | . 2 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐶)) = ((𝐴 ∖ 𝐶) ∩ 𝐵) | |
| 3 | incom 4156 | . . 3 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 4 | 3 | difeq1i 4069 | . 2 ⊢ ((𝐵 ∩ 𝐴) ∖ 𝐶) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| 5 | 1, 2, 4 | 3eqtr3i 2762 | 1 ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3894 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 |
| This theorem is referenced by: resdifcom 5946 resdmdfsn 5979 hartogslem1 9428 fpwwe2 10534 leiso 14366 basdif0 22868 tgdif0 22907 kqdisj 23647 trufil 23825 difininv 32497 gtiso 32682 dfon4 35935 disjdifb 48920 |
| Copyright terms: Public domain | W3C validator |