Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predisj Structured version   Visualization version   GIF version

Theorem predisj 48756
Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypotheses
Ref Expression
predisj.1 (𝜑 → Fun 𝐹)
predisj.2 (𝜑 → (𝐴𝐵) = ∅)
predisj.3 (𝜑𝑆 ⊆ (𝐹𝐴))
predisj.4 (𝜑𝑇 ⊆ (𝐹𝐵))
Assertion
Ref Expression
predisj (𝜑 → (𝑆𝑇) = ∅)

Proof of Theorem predisj
StepHypRef Expression
1 predisj.4 . 2 (𝜑𝑇 ⊆ (𝐹𝐵))
2 predisj.3 . . 3 (𝜑𝑆 ⊆ (𝐹𝐴))
3 predisj.1 . . . . 5 (𝜑 → Fun 𝐹)
4 inpreima 7059 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
53, 4syl 17 . . . 4 (𝜑 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
6 predisj.2 . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
76imaeq2d 6052 . . . . 5 (𝜑 → (𝐹 “ (𝐴𝐵)) = (𝐹 “ ∅))
8 ima0 6069 . . . . 5 (𝐹 “ ∅) = ∅
97, 8eqtrdi 2787 . . . 4 (𝜑 → (𝐹 “ (𝐴𝐵)) = ∅)
105, 9eqtr3d 2773 . . 3 (𝜑 → ((𝐹𝐴) ∩ (𝐹𝐵)) = ∅)
112, 10ssdisjd 48753 . 2 (𝜑 → (𝑆 ∩ (𝐹𝐵)) = ∅)
121, 11ssdisjdr 48754 1 (𝜑 → (𝑆𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3930  wss 3931  c0 4313  ccnv 5658  cima 5662  Fun wfun 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538
This theorem is referenced by:  sepfsepc  48869
  Copyright terms: Public domain W3C validator