Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predisj Structured version   Visualization version   GIF version

Theorem predisj 48542
Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypotheses
Ref Expression
predisj.1 (𝜑 → Fun 𝐹)
predisj.2 (𝜑 → (𝐴𝐵) = ∅)
predisj.3 (𝜑𝑆 ⊆ (𝐹𝐴))
predisj.4 (𝜑𝑇 ⊆ (𝐹𝐵))
Assertion
Ref Expression
predisj (𝜑 → (𝑆𝑇) = ∅)

Proof of Theorem predisj
StepHypRef Expression
1 predisj.4 . 2 (𝜑𝑇 ⊆ (𝐹𝐵))
2 predisj.3 . . 3 (𝜑𝑆 ⊆ (𝐹𝐴))
3 predisj.1 . . . . 5 (𝜑 → Fun 𝐹)
4 inpreima 7097 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
53, 4syl 17 . . . 4 (𝜑 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
6 predisj.2 . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
76imaeq2d 6089 . . . . 5 (𝜑 → (𝐹 “ (𝐴𝐵)) = (𝐹 “ ∅))
8 ima0 6106 . . . . 5 (𝐹 “ ∅) = ∅
97, 8eqtrdi 2796 . . . 4 (𝜑 → (𝐹 “ (𝐴𝐵)) = ∅)
105, 9eqtr3d 2782 . . 3 (𝜑 → ((𝐹𝐴) ∩ (𝐹𝐵)) = ∅)
112, 10ssdisjd 48539 . 2 (𝜑 → (𝑆 ∩ (𝐹𝐵)) = ∅)
121, 11ssdisjdr 48540 1 (𝜑 → (𝑆𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  wss 3976  c0 4352  ccnv 5699  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575
This theorem is referenced by:  sepfsepc  48607
  Copyright terms: Public domain W3C validator