Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > predisj | Structured version Visualization version GIF version |
Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
Ref | Expression |
---|---|
predisj.1 | ⊢ (𝜑 → Fun 𝐹) |
predisj.2 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
predisj.3 | ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) |
predisj.4 | ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) |
Ref | Expression |
---|---|
predisj | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predisj.4 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) | |
2 | predisj.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) | |
3 | predisj.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
4 | inpreima 6941 | . . . . 5 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
6 | predisj.2 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
7 | 6 | imaeq2d 5969 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ∅)) |
8 | ima0 5985 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
9 | 7, 8 | eqtrdi 2794 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ∅) |
10 | 5, 9 | eqtr3d 2780 | . . 3 ⊢ (𝜑 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = ∅) |
11 | 2, 10 | ssdisjd 46153 | . 2 ⊢ (𝜑 → (𝑆 ∩ (◡𝐹 “ 𝐵)) = ∅) |
12 | 1, 11 | ssdisjdr 46154 | 1 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ◡ccnv 5588 “ cima 5592 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 |
This theorem is referenced by: sepfsepc 46221 |
Copyright terms: Public domain | W3C validator |