| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > predisj | Structured version Visualization version GIF version | ||
| Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| predisj.1 | ⊢ (𝜑 → Fun 𝐹) |
| predisj.2 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| predisj.3 | ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) |
| predisj.4 | ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) |
| Ref | Expression |
|---|---|
| predisj | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predisj.4 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) | |
| 2 | predisj.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) | |
| 3 | predisj.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
| 4 | inpreima 7006 | . . . . 5 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
| 6 | predisj.2 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 7 | 6 | imaeq2d 6016 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ∅)) |
| 8 | ima0 6033 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 9 | 7, 8 | eqtrdi 2784 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ∅) |
| 10 | 5, 9 | eqtr3d 2770 | . . 3 ⊢ (𝜑 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = ∅) |
| 11 | 2, 10 | ssdisjd 48969 | . 2 ⊢ (𝜑 → (𝑆 ∩ (◡𝐹 “ 𝐵)) = ∅) |
| 12 | 1, 11 | ssdisjdr 48970 | 1 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ◡ccnv 5620 “ cima 5624 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 |
| This theorem is referenced by: sepfsepc 49089 |
| Copyright terms: Public domain | W3C validator |