![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > predisj | Structured version Visualization version GIF version |
Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
Ref | Expression |
---|---|
predisj.1 | ⊢ (𝜑 → Fun 𝐹) |
predisj.2 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
predisj.3 | ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) |
predisj.4 | ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) |
Ref | Expression |
---|---|
predisj | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predisj.4 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) | |
2 | predisj.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) | |
3 | predisj.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
4 | inpreima 7065 | . . . . 5 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
6 | predisj.2 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
7 | 6 | imaeq2d 6059 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ∅)) |
8 | ima0 6076 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
9 | 7, 8 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ∅) |
10 | 5, 9 | eqtr3d 2773 | . . 3 ⊢ (𝜑 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = ∅) |
11 | 2, 10 | ssdisjd 47656 | . 2 ⊢ (𝜑 → (𝑆 ∩ (◡𝐹 “ 𝐵)) = ∅) |
12 | 1, 11 | ssdisjdr 47657 | 1 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 ◡ccnv 5675 “ cima 5679 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 |
This theorem is referenced by: sepfsepc 47724 |
Copyright terms: Public domain | W3C validator |