Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predisj Structured version   Visualization version   GIF version

Theorem predisj 48842
Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
Hypotheses
Ref Expression
predisj.1 (𝜑 → Fun 𝐹)
predisj.2 (𝜑 → (𝐴𝐵) = ∅)
predisj.3 (𝜑𝑆 ⊆ (𝐹𝐴))
predisj.4 (𝜑𝑇 ⊆ (𝐹𝐵))
Assertion
Ref Expression
predisj (𝜑 → (𝑆𝑇) = ∅)

Proof of Theorem predisj
StepHypRef Expression
1 predisj.4 . 2 (𝜑𝑇 ⊆ (𝐹𝐵))
2 predisj.3 . . 3 (𝜑𝑆 ⊆ (𝐹𝐴))
3 predisj.1 . . . . 5 (𝜑 → Fun 𝐹)
4 inpreima 6992 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
53, 4syl 17 . . . 4 (𝜑 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
6 predisj.2 . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
76imaeq2d 6004 . . . . 5 (𝜑 → (𝐹 “ (𝐴𝐵)) = (𝐹 “ ∅))
8 ima0 6021 . . . . 5 (𝐹 “ ∅) = ∅
97, 8eqtrdi 2782 . . . 4 (𝜑 → (𝐹 “ (𝐴𝐵)) = ∅)
105, 9eqtr3d 2768 . . 3 (𝜑 → ((𝐹𝐴) ∩ (𝐹𝐵)) = ∅)
112, 10ssdisjd 48839 . 2 (𝜑 → (𝑆 ∩ (𝐹𝐵)) = ∅)
121, 11ssdisjdr 48840 1 (𝜑 → (𝑆𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3896  wss 3897  c0 4278  ccnv 5610  cima 5614  Fun wfun 6470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478
This theorem is referenced by:  sepfsepc  48959
  Copyright terms: Public domain W3C validator