| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > predisj | Structured version Visualization version GIF version | ||
| Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| predisj.1 | ⊢ (𝜑 → Fun 𝐹) |
| predisj.2 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| predisj.3 | ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) |
| predisj.4 | ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) |
| Ref | Expression |
|---|---|
| predisj | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predisj.4 | . 2 ⊢ (𝜑 → 𝑇 ⊆ (◡𝐹 “ 𝐵)) | |
| 2 | predisj.3 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (◡𝐹 “ 𝐴)) | |
| 3 | predisj.1 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
| 4 | inpreima 7039 | . . . . 5 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
| 6 | predisj.2 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 7 | 6 | imaeq2d 6034 | . . . . 5 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ ∅)) |
| 8 | ima0 6051 | . . . . 5 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 9 | 7, 8 | eqtrdi 2781 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ∅) |
| 10 | 5, 9 | eqtr3d 2767 | . . 3 ⊢ (𝜑 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = ∅) |
| 11 | 2, 10 | ssdisjd 48800 | . 2 ⊢ (𝜑 → (𝑆 ∩ (◡𝐹 “ 𝐵)) = ∅) |
| 12 | 1, 11 | ssdisjdr 48801 | 1 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ◡ccnv 5640 “ cima 5644 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 |
| This theorem is referenced by: sepfsepc 48920 |
| Copyright terms: Public domain | W3C validator |