| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdisjdr | Structured version Visualization version GIF version | ||
| Description: Subset preserves disjointness. Deduction form of ssdisj 4405. Alternatively this could be proved with ineqcom 4155 in tandem with ssdisjd 48839. (Contributed by Zhi Wang, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssdisjd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssdisjdr.2 | ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) |
| Ref | Expression |
|---|---|
| ssdisjdr | ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdisjd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sslin 4188 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| 4 | ssdisjdr.2 | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) | |
| 5 | sseq0 4348 | . 2 ⊢ (((𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵) ∧ (𝐶 ∩ 𝐵) = ∅) → (𝐶 ∩ 𝐴) = ∅) | |
| 6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4279 |
| This theorem is referenced by: predisj 48842 seposep 48957 |
| Copyright terms: Public domain | W3C validator |