Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdisjdr | Structured version Visualization version GIF version |
Description: Subset preserves disjointness. Deduction form of ssdisj 4390. Alternatively this could be proved with ineqcom 4133 in tandem with ssdisjd 46041. (Contributed by Zhi Wang, 7-Sep-2024.) |
Ref | Expression |
---|---|
ssdisjd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
ssdisjdr.2 | ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) |
Ref | Expression |
---|---|
ssdisjdr | ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdisjd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sslin 4165 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
4 | ssdisjdr.2 | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) | |
5 | sseq0 4330 | . 2 ⊢ (((𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵) ∧ (𝐶 ∩ 𝐵) = ∅) → (𝐶 ∩ 𝐴) = ∅) | |
6 | 3, 4, 5 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: predisj 46044 seposep 46107 |
Copyright terms: Public domain | W3C validator |