Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdisjdr Structured version   Visualization version   GIF version

Theorem ssdisjdr 48840
Description: Subset preserves disjointness. Deduction form of ssdisj 4405. Alternatively this could be proved with ineqcom 4155 in tandem with ssdisjd 48839. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
ssdisjd.1 (𝜑𝐴𝐵)
ssdisjdr.2 (𝜑 → (𝐶𝐵) = ∅)
Assertion
Ref Expression
ssdisjdr (𝜑 → (𝐶𝐴) = ∅)

Proof of Theorem ssdisjdr
StepHypRef Expression
1 ssdisjd.1 . . 3 (𝜑𝐴𝐵)
2 sslin 4188 . . 3 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
31, 2syl 17 . 2 (𝜑 → (𝐶𝐴) ⊆ (𝐶𝐵))
4 ssdisjdr.2 . 2 (𝜑 → (𝐶𝐵) = ∅)
5 sseq0 4348 . 2 (((𝐶𝐴) ⊆ (𝐶𝐵) ∧ (𝐶𝐵) = ∅) → (𝐶𝐴) = ∅)
63, 4, 5syl2anc 584 1 (𝜑 → (𝐶𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3896  wss 3897  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4279
This theorem is referenced by:  predisj  48842  seposep  48957
  Copyright terms: Public domain W3C validator