| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdisjdr | Structured version Visualization version GIF version | ||
| Description: Subset preserves disjointness. Deduction form of ssdisj 4426. Alternatively this could be proved with ineqcom 4176 in tandem with ssdisjd 48800. (Contributed by Zhi Wang, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| ssdisjd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssdisjdr.2 | ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) |
| Ref | Expression |
|---|---|
| ssdisjdr | ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdisjd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sslin 4209 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| 4 | ssdisjdr.2 | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐵) = ∅) | |
| 5 | sseq0 4369 | . 2 ⊢ (((𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵) ∧ (𝐶 ∩ 𝐵) = ∅) → (𝐶 ∩ 𝐴) = ∅) | |
| 6 | 3, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐶 ∩ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: predisj 48803 seposep 48918 |
| Copyright terms: Public domain | W3C validator |