MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq0 Structured version   Visualization version   GIF version

Theorem disjeq0 4390
Description: Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.)
Assertion
Ref Expression
disjeq0 ((𝐴𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))

Proof of Theorem disjeq0
StepHypRef Expression
1 ineq1 4140 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐵𝐵))
2 inidm 4153 . . . . . 6 (𝐵𝐵) = 𝐵
31, 2eqtrdi 2794 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
43eqeq1d 2740 . . . 4 (𝐴 = 𝐵 → ((𝐴𝐵) = ∅ ↔ 𝐵 = ∅))
5 eqtr 2761 . . . . . 6 ((𝐴 = 𝐵𝐵 = ∅) → 𝐴 = ∅)
6 simpr 485 . . . . . 6 ((𝐴 = 𝐵𝐵 = ∅) → 𝐵 = ∅)
75, 6jca 512 . . . . 5 ((𝐴 = 𝐵𝐵 = ∅) → (𝐴 = ∅ ∧ 𝐵 = ∅))
87ex 413 . . . 4 (𝐴 = 𝐵 → (𝐵 = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)))
94, 8sylbid 239 . . 3 (𝐴 = 𝐵 → ((𝐴𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)))
109com12 32 . 2 ((𝐴𝐵) = ∅ → (𝐴 = 𝐵 → (𝐴 = ∅ ∧ 𝐵 = ∅)))
11 eqtr3 2764 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵)
1210, 11impbid1 224 1 ((𝐴𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  cin 3886  c0 4257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3432  df-in 3894
This theorem is referenced by:  epnsym  9355
  Copyright terms: Public domain W3C validator