| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjeq0 | Structured version Visualization version GIF version | ||
| Description: Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.) |
| Ref | Expression |
|---|---|
| disjeq0 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4179 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐵)) | |
| 2 | inidm 4193 | . . . . . 6 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
| 3 | 1, 2 | eqtrdi 2781 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐵) |
| 4 | 3 | eqeq1d 2732 | . . . 4 ⊢ (𝐴 = 𝐵 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
| 5 | eqtr 2750 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → 𝐵 = ∅) | |
| 7 | 5, 6 | jca 511 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → (𝐴 = ∅ ∧ 𝐵 = ∅)) |
| 8 | 7 | ex 412 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 9 | 4, 8 | sylbid 240 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 10 | 9 | com12 32 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| 11 | eqtr3 2752 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵) | |
| 12 | 10, 11 | impbid1 225 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3916 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 |
| This theorem is referenced by: epnsym 9569 |
| Copyright terms: Public domain | W3C validator |