Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjeq0 | Structured version Visualization version GIF version |
Description: Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022.) |
Ref | Expression |
---|---|
disjeq0 | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4139 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐵)) | |
2 | inidm 4152 | . . . . . 6 ⊢ (𝐵 ∩ 𝐵) = 𝐵 | |
3 | 1, 2 | eqtrdi 2794 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐵) |
4 | 3 | eqeq1d 2740 | . . . 4 ⊢ (𝐴 = 𝐵 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐵 = ∅)) |
5 | eqtr 2761 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) | |
6 | simpr 485 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → 𝐵 = ∅) | |
7 | 5, 6 | jca 512 | . . . . 5 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = ∅) → (𝐴 = ∅ ∧ 𝐵 = ∅)) |
8 | 7 | ex 413 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
9 | 4, 8 | sylbid 239 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
10 | 9 | com12 32 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
11 | eqtr3 2764 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵) | |
12 | 10, 11 | impbid1 224 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 = 𝐵 ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∩ cin 3886 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 |
This theorem is referenced by: epnsym 9367 |
Copyright terms: Public domain | W3C validator |