|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > disjne | Structured version Visualization version GIF version | ||
| Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| disjne | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | disj 4450 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
| 2 | eleq1 2829 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
| 3 | 2 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝐶 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝐶 ∈ 𝐵)) | 
| 4 | 3 | rspccva 3621 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) | 
| 5 | eleq1a 2836 | . . . . 5 ⊢ (𝐷 ∈ 𝐵 → (𝐶 = 𝐷 → 𝐶 ∈ 𝐵)) | |
| 6 | 5 | necon3bd 2954 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → (¬ 𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐷)) | 
| 7 | 4, 6 | syl5com 31 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) | 
| 8 | 1, 7 | sylanb 581 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) | 
| 9 | 8 | 3impia 1118 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∩ cin 3950 ∅c0 4333 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-dif 3954 df-in 3958 df-nul 4334 | 
| This theorem is referenced by: brdom7disj 10571 brdom6disj 10572 frlmssuvc1 21814 f1resrcmplf1dlem 35100 kelac1 43075 | 
| Copyright terms: Public domain | W3C validator |