MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjne Structured version   Visualization version   GIF version

Theorem disjne 4478
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjne (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)

Proof of Theorem disjne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disj 4473 . . 3 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 eleq1 2832 . . . . . 6 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
32notbid 318 . . . . 5 (𝑥 = 𝐶 → (¬ 𝑥𝐵 ↔ ¬ 𝐶𝐵))
43rspccva 3634 . . . 4 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → ¬ 𝐶𝐵)
5 eleq1a 2839 . . . . 5 (𝐷𝐵 → (𝐶 = 𝐷𝐶𝐵))
65necon3bd 2960 . . . 4 (𝐷𝐵 → (¬ 𝐶𝐵𝐶𝐷))
74, 6syl5com 31 . . 3 ((∀𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴) → (𝐷𝐵𝐶𝐷))
81, 7sylanb 580 . 2 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → (𝐷𝐵𝐶𝐷))
983impia 1117 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴𝐷𝐵) → 𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cin 3975  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-dif 3979  df-in 3983  df-nul 4353
This theorem is referenced by:  brdom7disj  10600  brdom6disj  10601  frlmssuvc1  21837  f1resrcmplf1dlem  35062  kelac1  43020
  Copyright terms: Public domain W3C validator