Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjne | Structured version Visualization version GIF version |
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
disjne | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 4378 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
2 | eleq1 2826 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵)) | |
3 | 2 | notbid 317 | . . . . 5 ⊢ (𝑥 = 𝐶 → (¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝐶 ∈ 𝐵)) |
4 | 3 | rspccva 3551 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
5 | eleq1a 2834 | . . . . 5 ⊢ (𝐷 ∈ 𝐵 → (𝐶 = 𝐷 → 𝐶 ∈ 𝐵)) | |
6 | 5 | necon3bd 2956 | . . . 4 ⊢ (𝐷 ∈ 𝐵 → (¬ 𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
7 | 4, 6 | syl5com 31 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
8 | 1, 7 | sylanb 580 | . 2 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → (𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷)) |
9 | 8 | 3impia 1115 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → 𝐶 ≠ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-dif 3886 df-in 3890 df-nul 4254 |
This theorem is referenced by: brdom7disj 10218 brdom6disj 10219 frlmssuvc1 20911 f1resrcmplf1dlem 32958 kelac1 40804 |
Copyright terms: Public domain | W3C validator |