MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epnsym Structured version   Visualization version   GIF version

Theorem epnsym 9633
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsym E ≠ E

Proof of Theorem epnsym
StepHypRef Expression
1 cnvepnep 9632 . 2 ( E ∩ E ) = ∅
2 disjeq0 4456 . 2 (( E ∩ E ) = ∅ → ( E = E ↔ ( E = ∅ ∧ E = ∅)))
3 epn0 5587 . . . . . 6 E ≠ ∅
4 eqneqall 2948 . . . . . 6 ( E = ∅ → ( E ≠ ∅ → E ≠ E ))
53, 4mpi 20 . . . . 5 ( E = ∅ → E ≠ E )
65adantl 481 . . . 4 (( E = ∅ ∧ E = ∅) → E ≠ E )
76a1i 11 . . 3 ( E = E → (( E = ∅ ∧ E = ∅) → E ≠ E ))
8 neqne 2945 . . . 4 E = E → E ≠ E )
98a1d 25 . . 3 E = E → (¬ ( E = ∅ ∧ E = ∅) → E ≠ E ))
107, 9bija 380 . 2 (( E = E ↔ ( E = ∅ ∧ E = ∅)) → E ≠ E )
111, 2, 10mp2b 10 1 E ≠ E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wne 2937  cin 3946  c0 4323   E cep 5581  ccnv 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-reg 9616
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-eprel 5582  df-fr 5633  df-xp 5684  df-rel 5685  df-cnv 5686
This theorem is referenced by:  epnsymrel  38034
  Copyright terms: Public domain W3C validator