MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epnsym Structured version   Visualization version   GIF version

Theorem epnsym 9367
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsym E ≠ E

Proof of Theorem epnsym
StepHypRef Expression
1 cnvepnep 9366 . 2 ( E ∩ E ) = ∅
2 disjeq0 4389 . 2 (( E ∩ E ) = ∅ → ( E = E ↔ ( E = ∅ ∧ E = ∅)))
3 epn0 5500 . . . . . 6 E ≠ ∅
4 eqneqall 2954 . . . . . 6 ( E = ∅ → ( E ≠ ∅ → E ≠ E ))
53, 4mpi 20 . . . . 5 ( E = ∅ → E ≠ E )
65adantl 482 . . . 4 (( E = ∅ ∧ E = ∅) → E ≠ E )
76a1i 11 . . 3 ( E = E → (( E = ∅ ∧ E = ∅) → E ≠ E ))
8 neqne 2951 . . . 4 E = E → E ≠ E )
98a1d 25 . . 3 E = E → (¬ ( E = ∅ ∧ E = ∅) → E ≠ E ))
107, 9bija 382 . 2 (( E = E ↔ ( E = ∅ ∧ E = ∅)) → E ≠ E )
111, 2, 10mp2b 10 1 E ≠ E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wne 2943  cin 3886  c0 4256   E cep 5494  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-fr 5544  df-xp 5595  df-rel 5596  df-cnv 5597
This theorem is referenced by:  epnsymrel  36676
  Copyright terms: Public domain W3C validator