![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epnsym | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epnsym | ⊢ ◡ E ≠ E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepnep 9677 | . 2 ⊢ (◡ E ∩ E ) = ∅ | |
2 | disjeq0 4479 | . 2 ⊢ ((◡ E ∩ E ) = ∅ → (◡ E = E ↔ (◡ E = ∅ ∧ E = ∅))) | |
3 | epn0 5604 | . . . . . 6 ⊢ E ≠ ∅ | |
4 | eqneqall 2957 | . . . . . 6 ⊢ ( E = ∅ → ( E ≠ ∅ → ◡ E ≠ E )) | |
5 | 3, 4 | mpi 20 | . . . . 5 ⊢ ( E = ∅ → ◡ E ≠ E ) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E ) |
7 | 6 | a1i 11 | . . 3 ⊢ (◡ E = E → ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
8 | neqne 2954 | . . . 4 ⊢ (¬ ◡ E = E → ◡ E ≠ E ) | |
9 | 8 | a1d 25 | . . 3 ⊢ (¬ ◡ E = E → (¬ (◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
10 | 7, 9 | bija 380 | . 2 ⊢ ((◡ E = E ↔ (◡ E = ∅ ∧ E = ∅)) → ◡ E ≠ E ) |
11 | 1, 2, 10 | mp2b 10 | 1 ⊢ ◡ E ≠ E |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 E cep 5598 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-fr 5652 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: epnsymrel 38518 |
Copyright terms: Public domain | W3C validator |