|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > epnsym | Structured version Visualization version GIF version | ||
| Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| epnsym | ⊢ ◡ E ≠ E | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvepnep 9648 | . 2 ⊢ (◡ E ∩ E ) = ∅ | |
| 2 | disjeq0 4456 | . 2 ⊢ ((◡ E ∩ E ) = ∅ → (◡ E = E ↔ (◡ E = ∅ ∧ E = ∅))) | |
| 3 | epn0 5589 | . . . . . 6 ⊢ E ≠ ∅ | |
| 4 | eqneqall 2951 | . . . . . 6 ⊢ ( E = ∅ → ( E ≠ ∅ → ◡ E ≠ E )) | |
| 5 | 3, 4 | mpi 20 | . . . . 5 ⊢ ( E = ∅ → ◡ E ≠ E ) | 
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E ) | 
| 7 | 6 | a1i 11 | . . 3 ⊢ (◡ E = E → ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) | 
| 8 | neqne 2948 | . . . 4 ⊢ (¬ ◡ E = E → ◡ E ≠ E ) | |
| 9 | 8 | a1d 25 | . . 3 ⊢ (¬ ◡ E = E → (¬ (◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) | 
| 10 | 7, 9 | bija 380 | . 2 ⊢ ((◡ E = E ↔ (◡ E = ∅ ∧ E = ∅)) → ◡ E ≠ E ) | 
| 11 | 1, 2, 10 | mp2b 10 | 1 ⊢ ◡ E ≠ E | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2940 ∩ cin 3950 ∅c0 4333 E cep 5583 ◡ccnv 5684 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-reg 9632 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-eprel 5584 df-fr 5637 df-xp 5691 df-rel 5692 df-cnv 5693 | 
| This theorem is referenced by: epnsymrel 38563 | 
| Copyright terms: Public domain | W3C validator |