![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epnsym | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epnsym | ⊢ ◡ E ≠ E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepnep 9602 | . 2 ⊢ (◡ E ∩ E ) = ∅ | |
2 | disjeq0 4455 | . 2 ⊢ ((◡ E ∩ E ) = ∅ → (◡ E = E ↔ (◡ E = ∅ ∧ E = ∅))) | |
3 | epn0 5585 | . . . . . 6 ⊢ E ≠ ∅ | |
4 | eqneqall 2951 | . . . . . 6 ⊢ ( E = ∅ → ( E ≠ ∅ → ◡ E ≠ E )) | |
5 | 3, 4 | mpi 20 | . . . . 5 ⊢ ( E = ∅ → ◡ E ≠ E ) |
6 | 5 | adantl 482 | . . . 4 ⊢ ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E ) |
7 | 6 | a1i 11 | . . 3 ⊢ (◡ E = E → ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
8 | neqne 2948 | . . . 4 ⊢ (¬ ◡ E = E → ◡ E ≠ E ) | |
9 | 8 | a1d 25 | . . 3 ⊢ (¬ ◡ E = E → (¬ (◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
10 | 7, 9 | bija 381 | . 2 ⊢ ((◡ E = E ↔ (◡ E = ∅ ∧ E = ∅)) → ◡ E ≠ E ) |
11 | 1, 2, 10 | mp2b 10 | 1 ⊢ ◡ E ≠ E |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ≠ wne 2940 ∩ cin 3947 ∅c0 4322 E cep 5579 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-reg 9586 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-eprel 5580 df-fr 5631 df-xp 5682 df-rel 5683 df-cnv 5684 |
This theorem is referenced by: epnsymrel 37427 |
Copyright terms: Public domain | W3C validator |