Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epnsym | Structured version Visualization version GIF version |
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
Ref | Expression |
---|---|
epnsym | ⊢ ◡ E ≠ E |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepnep 9296 | . 2 ⊢ (◡ E ∩ E ) = ∅ | |
2 | disjeq0 4386 | . 2 ⊢ ((◡ E ∩ E ) = ∅ → (◡ E = E ↔ (◡ E = ∅ ∧ E = ∅))) | |
3 | epn0 5491 | . . . . . 6 ⊢ E ≠ ∅ | |
4 | eqneqall 2953 | . . . . . 6 ⊢ ( E = ∅ → ( E ≠ ∅ → ◡ E ≠ E )) | |
5 | 3, 4 | mpi 20 | . . . . 5 ⊢ ( E = ∅ → ◡ E ≠ E ) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E ) |
7 | 6 | a1i 11 | . . 3 ⊢ (◡ E = E → ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
8 | neqne 2950 | . . . 4 ⊢ (¬ ◡ E = E → ◡ E ≠ E ) | |
9 | 8 | a1d 25 | . . 3 ⊢ (¬ ◡ E = E → (¬ (◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
10 | 7, 9 | bija 381 | . 2 ⊢ ((◡ E = E ↔ (◡ E = ∅ ∧ E = ∅)) → ◡ E ≠ E ) |
11 | 1, 2, 10 | mp2b 10 | 1 ⊢ ◡ E ≠ E |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 E cep 5485 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-fr 5535 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: epnsymrel 36603 |
Copyright terms: Public domain | W3C validator |