MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epnsym Structured version   Visualization version   GIF version

Theorem epnsym 9623
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsym E ≠ E

Proof of Theorem epnsym
StepHypRef Expression
1 cnvepnep 9622 . 2 ( E ∩ E ) = ∅
2 disjeq0 4431 . 2 (( E ∩ E ) = ∅ → ( E = E ↔ ( E = ∅ ∧ E = ∅)))
3 epn0 5558 . . . . . 6 E ≠ ∅
4 eqneqall 2943 . . . . . 6 ( E = ∅ → ( E ≠ ∅ → E ≠ E ))
53, 4mpi 20 . . . . 5 ( E = ∅ → E ≠ E )
65adantl 481 . . . 4 (( E = ∅ ∧ E = ∅) → E ≠ E )
76a1i 11 . . 3 ( E = E → (( E = ∅ ∧ E = ∅) → E ≠ E ))
8 neqne 2940 . . . 4 E = E → E ≠ E )
98a1d 25 . . 3 E = E → (¬ ( E = ∅ ∧ E = ∅) → E ≠ E ))
107, 9bija 380 . 2 (( E = E ↔ ( E = ∅ ∧ E = ∅)) → E ≠ E )
111, 2, 10mp2b 10 1 E ≠ E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wne 2932  cin 3925  c0 4308   E cep 5552  ccnv 5653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-reg 9606
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-eprel 5553  df-fr 5606  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  epnsymrel  38580
  Copyright terms: Public domain W3C validator