| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epnsym | Structured version Visualization version GIF version | ||
| Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| epnsym | ⊢ ◡ E ≠ E |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvepnep 9498 | . 2 ⊢ (◡ E ∩ E ) = ∅ | |
| 2 | disjeq0 4406 | . 2 ⊢ ((◡ E ∩ E ) = ∅ → (◡ E = E ↔ (◡ E = ∅ ∧ E = ∅))) | |
| 3 | epn0 5521 | . . . . . 6 ⊢ E ≠ ∅ | |
| 4 | eqneqall 2939 | . . . . . 6 ⊢ ( E = ∅ → ( E ≠ ∅ → ◡ E ≠ E )) | |
| 5 | 3, 4 | mpi 20 | . . . . 5 ⊢ ( E = ∅ → ◡ E ≠ E ) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E ) |
| 7 | 6 | a1i 11 | . . 3 ⊢ (◡ E = E → ((◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
| 8 | neqne 2936 | . . . 4 ⊢ (¬ ◡ E = E → ◡ E ≠ E ) | |
| 9 | 8 | a1d 25 | . . 3 ⊢ (¬ ◡ E = E → (¬ (◡ E = ∅ ∧ E = ∅) → ◡ E ≠ E )) |
| 10 | 7, 9 | bija 380 | . 2 ⊢ ((◡ E = E ↔ (◡ E = ∅ ∧ E = ∅)) → ◡ E ≠ E ) |
| 11 | 1, 2, 10 | mp2b 10 | 1 ⊢ ◡ E ≠ E |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2928 ∩ cin 3901 ∅c0 4283 E cep 5515 ◡ccnv 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-eprel 5516 df-fr 5569 df-xp 5622 df-rel 5623 df-cnv 5624 |
| This theorem is referenced by: epnsymrel 38598 |
| Copyright terms: Public domain | W3C validator |