MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epnsym Structured version   Visualization version   GIF version

Theorem epnsym 9562
Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.)
Assertion
Ref Expression
epnsym E ≠ E

Proof of Theorem epnsym
StepHypRef Expression
1 cnvepnep 9561 . 2 ( E ∩ E ) = ∅
2 disjeq0 4419 . 2 (( E ∩ E ) = ∅ → ( E = E ↔ ( E = ∅ ∧ E = ∅)))
3 epn0 5543 . . . . . 6 E ≠ ∅
4 eqneqall 2936 . . . . . 6 ( E = ∅ → ( E ≠ ∅ → E ≠ E ))
53, 4mpi 20 . . . . 5 ( E = ∅ → E ≠ E )
65adantl 481 . . . 4 (( E = ∅ ∧ E = ∅) → E ≠ E )
76a1i 11 . . 3 ( E = E → (( E = ∅ ∧ E = ∅) → E ≠ E ))
8 neqne 2933 . . . 4 E = E → E ≠ E )
98a1d 25 . . 3 E = E → (¬ ( E = ∅ ∧ E = ∅) → E ≠ E ))
107, 9bija 380 . 2 (( E = E ↔ ( E = ∅ ∧ E = ∅)) → E ≠ E )
111, 2, 10mp2b 10 1 E ≠ E
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wne 2925  cin 3913  c0 4296   E cep 5537  ccnv 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-eprel 5538  df-fr 5591  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by:  epnsymrel  38553
  Copyright terms: Public domain W3C validator