Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjel | Structured version Visualization version GIF version |
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
Ref | Expression |
---|---|
disjel | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 4392 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eleq2 2828 | . . . 4 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ (𝐴 ∖ 𝐵))) | |
3 | eldifn 4066 | . . . 4 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
4 | 2, 3 | syl6bi 252 | . . 3 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
5 | 1, 4 | sylbi 216 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
6 | 5 | imp 406 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ∩ cin 3890 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-dif 3894 df-in 3898 df-nul 4262 |
This theorem is referenced by: disjxun 5076 fvun1 6853 dedekindle 11122 fprodsplit 15657 unelldsys 32105 dvasin 35840 |
Copyright terms: Public domain | W3C validator |