MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjel Structured version   Visualization version   GIF version

Theorem disjel 4396
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.)
Assertion
Ref Expression
disjel (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → ¬ 𝐶𝐵)

Proof of Theorem disjel
StepHypRef Expression
1 disj3 4393 . . 3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eleq2 2825 . . . 4 (𝐴 = (𝐴𝐵) → (𝐶𝐴𝐶 ∈ (𝐴𝐵)))
3 eldifn 4068 . . . 4 (𝐶 ∈ (𝐴𝐵) → ¬ 𝐶𝐵)
42, 3syl6bi 253 . . 3 (𝐴 = (𝐴𝐵) → (𝐶𝐴 → ¬ 𝐶𝐵))
51, 4sylbi 216 . 2 ((𝐴𝐵) = ∅ → (𝐶𝐴 → ¬ 𝐶𝐵))
65imp 408 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → ¬ 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1539  wcel 2104  cdif 3889  cin 3891  c0 4262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-v 3439  df-dif 3895  df-in 3899  df-nul 4263
This theorem is referenced by:  disjxun  5079  fvun1  6891  dedekindle  11185  fprodsplit  15721  unelldsys  32171  dvasin  35905
  Copyright terms: Public domain W3C validator