| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjel | Structured version Visualization version GIF version | ||
| Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| disjel | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj3 4420 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
| 2 | eleq2 2818 | . . . 4 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ (𝐴 ∖ 𝐵))) | |
| 3 | eldifn 4098 | . . . 4 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
| 4 | 2, 3 | biimtrdi 253 | . . 3 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
| 5 | 1, 4 | sylbi 217 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
| 6 | 5 | imp 406 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∩ cin 3916 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-dif 3920 df-in 3924 df-nul 4300 |
| This theorem is referenced by: disjxun 5108 fvun1 6955 dedekindle 11345 fprodsplit 15939 unelldsys 34155 dvasin 37705 |
| Copyright terms: Public domain | W3C validator |