MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq12d Structured version   Visualization version   GIF version

Theorem disjeq12d 5044
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disjeq1d.1 (𝜑𝐴 = 𝐵)
disjeq12d.1 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
disjeq12d (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem disjeq12d
StepHypRef Expression
1 disjeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21disjeq1d 5043 . 2 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
3 disjeq12d.1 . . . 4 (𝜑𝐶 = 𝐷)
43adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
54disjeq2dv 5040 . 2 (𝜑 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 𝐷))
62, 5bitrd 278 1 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Disj wdisj 5035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rmo 3071  df-v 3424  df-in 3890  df-ss 3900  df-disj 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator