Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjeq12d | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
disjeq12d.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
disjeq12d | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | disjeq1d 5043 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
3 | disjeq12d.1 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
5 | 4 | disjeq2dv 5040 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
6 | 2, 5 | bitrd 278 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rmo 3071 df-v 3424 df-in 3890 df-ss 3900 df-disj 5036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |