MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq12d Structured version   Visualization version   GIF version

Theorem disjeq12d 5142
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disjeq1d.1 (𝜑𝐴 = 𝐵)
disjeq12d.1 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
disjeq12d (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem disjeq12d
StepHypRef Expression
1 disjeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21disjeq1d 5141 . 2 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
3 disjeq12d.1 . . . 4 (𝜑𝐶 = 𝐷)
43adantr 480 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
54disjeq2dv 5138 . 2 (𝜑 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 𝐷))
62, 5bitrd 279 1 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-clel 2819  df-ral 3068  df-rmo 3388  df-ss 3993  df-disj 5134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator