MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisj Structured version   Visualization version   GIF version

Theorem cbvdisj 5143
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
cbvdisj.1 𝑦𝐵
cbvdisj.2 𝑥𝐶
cbvdisj.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisj (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvdisj.1 . . . . 5 𝑦𝐵
21nfcri 2900 . . . 4 𝑦 𝑧𝐵
3 cbvdisj.2 . . . . 5 𝑥𝐶
43nfcri 2900 . . . 4 𝑥 𝑧𝐶
5 cbvdisj.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2830 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrmow 3417 . . 3 (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐴 𝑧𝐶)
87albii 1817 . 2 (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
9 df-disj 5134 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
10 df-disj 5134 . 2 (Disj 𝑦𝐴 𝐶 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
118, 9, 103bitr4i 303 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  wnfc 2893  ∃*wrmo 3387  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rmo 3388  df-disj 5134
This theorem is referenced by:  disjors  5149  disjxiun  5163  volfiniun  25601  voliun  25608  carsggect  34283  omsmeas  34288  disjf1  45090  disjrnmpt2  45095  fsumiunss  45496  sge0iunmpt  46339  iundjiun  46381  meadjiun  46387
  Copyright terms: Public domain W3C validator