MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisj Structured version   Visualization version   GIF version

Theorem cbvdisj 5119
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
cbvdisj.1 𝑦𝐵
cbvdisj.2 𝑥𝐶
cbvdisj.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisj (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvdisj.1 . . . . 5 𝑦𝐵
21nfcri 2896 . . . 4 𝑦 𝑧𝐵
3 cbvdisj.2 . . . . 5 𝑥𝐶
43nfcri 2896 . . . 4 𝑥 𝑧𝐶
5 cbvdisj.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2826 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrmow 3408 . . 3 (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐴 𝑧𝐶)
87albii 1818 . 2 (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
9 df-disj 5110 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
10 df-disj 5110 . 2 (Disj 𝑦𝐴 𝐶 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
118, 9, 103bitr4i 303 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537   = wceq 1539  wcel 2107  wnfc 2889  ∃*wrmo 3378  Disj wdisj 5109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-mo 2539  df-cleq 2728  df-clel 2815  df-nfc 2891  df-rmo 3379  df-disj 5110
This theorem is referenced by:  disjors  5125  disjxiun  5139  volfiniun  25583  voliun  25590  carsggect  34321  omsmeas  34326  disjf1  45193  disjrnmpt2  45198  fsumiunss  45595  sge0iunmpt  46438  iundjiun  46480  meadjiun  46486
  Copyright terms: Public domain W3C validator