![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvdisj | Structured version Visualization version GIF version |
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
cbvdisj.1 | ⊢ Ⅎ𝑦𝐵 |
cbvdisj.2 | ⊢ Ⅎ𝑥𝐶 |
cbvdisj.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvdisj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvdisj.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
3 | cbvdisj.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
5 | cbvdisj.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
6 | 5 | eleq2d 2830 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | 2, 4, 6 | cbvrmow 3417 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
8 | 7 | albii 1817 | . 2 ⊢ (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
9 | df-disj 5134 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
10 | df-disj 5134 | . 2 ⊢ (Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) | |
11 | 8, 9, 10 | 3bitr4i 303 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ∃*wrmo 3387 Disj wdisj 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-mo 2543 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rmo 3388 df-disj 5134 |
This theorem is referenced by: disjors 5149 disjxiun 5163 volfiniun 25601 voliun 25608 carsggect 34283 omsmeas 34288 disjf1 45090 disjrnmpt2 45095 fsumiunss 45496 sge0iunmpt 46339 iundjiun 46381 meadjiun 46387 |
Copyright terms: Public domain | W3C validator |