MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvdisj Structured version   Visualization version   GIF version

Theorem cbvdisj 5049
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
cbvdisj.1 𝑦𝐵
cbvdisj.2 𝑥𝐶
cbvdisj.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvdisj (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvdisj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvdisj.1 . . . . 5 𝑦𝐵
21nfcri 2894 . . . 4 𝑦 𝑧𝐵
3 cbvdisj.2 . . . . 5 𝑥𝐶
43nfcri 2894 . . . 4 𝑥 𝑧𝐶
5 cbvdisj.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2824 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrmow 3375 . . 3 (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐴 𝑧𝐶)
87albii 1822 . 2 (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
9 df-disj 5040 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
10 df-disj 5040 . 2 (Disj 𝑦𝐴 𝐶 ↔ ∀𝑧∃*𝑦𝐴 𝑧𝐶)
118, 9, 103bitr4i 303 1 (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106  wnfc 2887  ∃*wrmo 3067  Disj wdisj 5039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rmo 3071  df-disj 5040
This theorem is referenced by:  cbvdisjv  5050  disjors  5055  disjxiun  5071  volfiniun  24711  voliun  24718  carsggect  32285  omsmeas  32290  disjf1  42720  disjrnmpt2  42726  fsumiunss  43116  sge0iunmpt  43956  iundjiun  43998  meadjiun  44004
  Copyright terms: Public domain W3C validator