| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvdisj | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| cbvdisj.1 | ⊢ Ⅎ𝑦𝐵 |
| cbvdisj.2 | ⊢ Ⅎ𝑥𝐶 |
| cbvdisj.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvdisj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvdisj.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 2 | 1 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 3 | cbvdisj.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 5 | cbvdisj.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 6 | 5 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | 2, 4, 6 | cbvrmow 3381 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 8 | 7 | albii 1819 | . 2 ⊢ (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 9 | df-disj 5075 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
| 10 | df-disj 5075 | . 2 ⊢ (Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ∃*wrmo 3353 Disj wdisj 5074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2533 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rmo 3354 df-disj 5075 |
| This theorem is referenced by: disjors 5090 disjxiun 5104 volfiniun 25448 voliun 25455 carsggect 34309 omsmeas 34314 disjf1 45177 disjrnmpt2 45182 fsumiunss 45573 sge0iunmpt 46416 iundjiun 46458 meadjiun 46464 |
| Copyright terms: Public domain | W3C validator |