Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvdisj | Structured version Visualization version GIF version |
Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
cbvdisj.1 | ⊢ Ⅎ𝑦𝐵 |
cbvdisj.2 | ⊢ Ⅎ𝑥𝐶 |
cbvdisj.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvdisj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvdisj.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
3 | cbvdisj.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
5 | cbvdisj.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
6 | 5 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
7 | 2, 4, 6 | cbvrmow 3375 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
8 | 7 | albii 1822 | . 2 ⊢ (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
9 | df-disj 5040 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
10 | df-disj 5040 | . 2 ⊢ (Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) | |
11 | 8, 9, 10 | 3bitr4i 303 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∃*wrmo 3067 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rmo 3071 df-disj 5040 |
This theorem is referenced by: cbvdisjv 5050 disjors 5055 disjxiun 5071 volfiniun 24711 voliun 24718 carsggect 32285 omsmeas 32290 disjf1 42720 disjrnmpt2 42726 fsumiunss 43116 sge0iunmpt 43956 iundjiun 43998 meadjiun 44004 |
Copyright terms: Public domain | W3C validator |