| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvdisj | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| cbvdisj.1 | ⊢ Ⅎ𝑦𝐵 |
| cbvdisj.2 | ⊢ Ⅎ𝑥𝐶 |
| cbvdisj.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvdisj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvdisj.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 2 | 1 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 3 | cbvdisj.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 5 | cbvdisj.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 6 | 5 | eleq2d 2817 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | 2, 4, 6 | cbvrmow 3371 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 8 | 7 | albii 1820 | . 2 ⊢ (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 9 | df-disj 5059 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
| 10 | df-disj 5059 | . 2 ⊢ (Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 ∃*wrmo 3345 Disj wdisj 5058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rmo 3346 df-disj 5059 |
| This theorem is referenced by: disjors 5074 disjxiun 5088 volfiniun 25476 voliun 25483 carsggect 34329 omsmeas 34334 disjf1 45226 disjrnmpt2 45231 fsumiunss 45621 sge0iunmpt 46462 iundjiun 46504 meadjiun 46510 |
| Copyright terms: Public domain | W3C validator |