| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjeq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| disjeq2dv | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjeq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | disjeq2 5078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Disj wdisj 5074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-cleq 2721 df-clel 2803 df-ral 3045 df-rmo 3354 df-ss 3931 df-disj 5075 |
| This theorem is referenced by: disjeq12d 5083 iunmbl 25454 uniioovol 25480 tocyccntz 33101 carsggect 34309 disjeq12dv 36203 voliunnfl 37658 nnfoctbdjlem 46453 meadjiun 46464 |
| Copyright terms: Public domain | W3C validator |