Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2dv Structured version   Visualization version   GIF version

Theorem disjeq2dv 5028
 Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
disjeq2dv (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjeq2dv
StepHypRef Expression
1 disjeq2dv.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3182 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 disjeq2 5027 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
42, 3syl 17 1 (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1533   ∈ wcel 2110  ∀wral 3138  Disj wdisj 5023 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-clab 2800  df-cleq 2814  df-clel 2893  df-ral 3143  df-rmo 3146  df-in 3942  df-ss 3951  df-disj 5024 This theorem is referenced by:  disjeq12d  5032  iunmbl  24148  uniioovol  24174  tocyccntz  30781  carsggect  31571  voliunnfl  34930  nnfoctbdjlem  42731  meadjiun  42742
 Copyright terms: Public domain W3C validator