MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq2dv Structured version   Visualization version   GIF version

Theorem disjeq2dv 5138
Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
disjeq2dv (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjeq2dv
StepHypRef Expression
1 disjeq2dv.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 disjeq2 5137 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
42, 3syl 17 1 (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-clel 2819  df-ral 3068  df-rmo 3388  df-ss 3993  df-disj 5134
This theorem is referenced by:  disjeq12d  5142  iunmbl  25607  uniioovol  25633  tocyccntz  33137  carsggect  34283  disjeq12dv  36181  voliunnfl  37624  nnfoctbdjlem  46376  meadjiun  46387
  Copyright terms: Public domain W3C validator