Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1d Structured version   Visualization version   GIF version

Theorem disjeq1d 5035
 Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
disjeq1d (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem disjeq1d
StepHypRef Expression
1 disjeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 disjeq1 5034 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 1 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   = wceq 1530  Disj wdisj 5027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-clab 2803  df-cleq 2817  df-clel 2897  df-rmo 3150  df-in 3946  df-ss 3955  df-disj 5028 This theorem is referenced by:  disjeq12d  5036  disjxiun  5059  disjdifprg  30241  disjdifprg2  30242  disjun0  30261  tocyccntz  30701  measxun2  31356  measssd  31361  meadjun  42607
 Copyright terms: Public domain W3C validator