MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1d Structured version   Visualization version   GIF version

Theorem disjeq1d 5118
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
disjeq1d (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem disjeq1d
StepHypRef Expression
1 disjeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 disjeq1 5117 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 1 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  Disj wdisj 5110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2540  df-cleq 2729  df-clel 2816  df-rmo 3380  df-ss 3968  df-disj 5111
This theorem is referenced by:  disjeq12d  5119  disjxiun  5140  disjdifprg  32588  disjdifprg2  32589  disjun0  32608  tocyccntz  33164  measxun2  34211  measssd  34216  meadjun  46477
  Copyright terms: Public domain W3C validator