MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1d Structured version   Visualization version   GIF version

Theorem disjeq1d 5120
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
disjeq1d (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem disjeq1d
StepHypRef Expression
1 disjeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 disjeq1 5119 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 1 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  Disj wdisj 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-rmo 3376  df-v 3476  df-in 3954  df-ss 3964  df-disj 5113
This theorem is referenced by:  disjeq12d  5121  disjxiun  5144  disjdifprg  31793  disjdifprg2  31794  disjun0  31813  tocyccntz  32290  measxun2  33196  measssd  33201  meadjun  45164
  Copyright terms: Public domain W3C validator