![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjeq1d | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
disjeq1d | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | disjeq1 5113 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 Disj wdisj 5106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-mo 2528 df-clab 2704 df-cleq 2718 df-clel 2804 df-rmo 3370 df-v 3470 df-in 3950 df-ss 3960 df-disj 5107 |
This theorem is referenced by: disjeq12d 5115 disjxiun 5138 disjdifprg 32315 disjdifprg2 32316 disjun0 32335 tocyccntz 32809 measxun2 33738 measssd 33743 meadjun 45750 |
Copyright terms: Public domain | W3C validator |