| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjeq1d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| disjeq1d | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | disjeq1 5098 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Disj wdisj 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-cleq 2728 df-clel 2810 df-rmo 3364 df-ss 3948 df-disj 5092 |
| This theorem is referenced by: disjeq12d 5100 disjxiun 5121 disjdifprg 32561 disjdifprg2 32562 disjun0 32581 tocyccntz 33160 measxun2 34246 measssd 34251 meadjun 46458 |
| Copyright terms: Public domain | W3C validator |