Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdju | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
nfdju.1 | ⊢ Ⅎ𝑥𝐴 |
nfdju.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdju | ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9590 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥{∅} | |
3 | nfdju.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfxp 5613 | . . 3 ⊢ Ⅎ𝑥({∅} × 𝐴) |
5 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥{1o} | |
6 | nfdju.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfxp 5613 | . . 3 ⊢ Ⅎ𝑥({1o} × 𝐵) |
8 | 4, 7 | nfun 4095 | . 2 ⊢ Ⅎ𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
9 | 1, 8 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 ∪ cun 3881 ∅c0 4253 {csn 4558 × cxp 5578 1oc1o 8260 ⊔ cdju 9587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-un 3888 df-opab 5133 df-xp 5586 df-dju 9590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |