MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdju Structured version   Visualization version   GIF version

Theorem nfdju 9867
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1 𝑥𝐴
nfdju.2 𝑥𝐵
Assertion
Ref Expression
nfdju 𝑥(𝐴𝐵)

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 9861 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 nfcv 2892 . . . 4 𝑥{∅}
3 nfdju.1 . . . 4 𝑥𝐴
42, 3nfxp 5674 . . 3 𝑥({∅} × 𝐴)
5 nfcv 2892 . . . 4 𝑥{1o}
6 nfdju.2 . . . 4 𝑥𝐵
75, 6nfxp 5674 . . 3 𝑥({1o} × 𝐵)
84, 7nfun 4136 . 2 𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵))
91, 8nfcxfr 2890 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2877  cun 3915  c0 4299  {csn 4592   × cxp 5639  1oc1o 8430  cdju 9858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-un 3922  df-opab 5173  df-xp 5647  df-dju 9861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator