Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdju | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
nfdju.1 | ⊢ Ⅎ𝑥𝐴 |
nfdju.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdju | ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju 9356 | . 2 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
2 | nfcv 2920 | . . . 4 ⊢ Ⅎ𝑥{∅} | |
3 | nfdju.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfxp 5558 | . . 3 ⊢ Ⅎ𝑥({∅} × 𝐴) |
5 | nfcv 2920 | . . . 4 ⊢ Ⅎ𝑥{1o} | |
6 | nfdju.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfxp 5558 | . . 3 ⊢ Ⅎ𝑥({1o} × 𝐵) |
8 | 4, 7 | nfun 4071 | . 2 ⊢ Ⅎ𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
9 | 1, 8 | nfcxfr 2918 | 1 ⊢ Ⅎ𝑥(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2900 ∪ cun 3857 ∅c0 4226 {csn 4523 × cxp 5523 1oc1o 8106 ⊔ cdju 9353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-un 3864 df-opab 5096 df-xp 5531 df-dju 9356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |