MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdju Structured version   Visualization version   GIF version

Theorem nfdju 9665
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1 𝑥𝐴
nfdju.2 𝑥𝐵
Assertion
Ref Expression
nfdju 𝑥(𝐴𝐵)

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 9659 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 nfcv 2907 . . . 4 𝑥{∅}
3 nfdju.1 . . . 4 𝑥𝐴
42, 3nfxp 5622 . . 3 𝑥({∅} × 𝐴)
5 nfcv 2907 . . . 4 𝑥{1o}
6 nfdju.2 . . . 4 𝑥𝐵
75, 6nfxp 5622 . . 3 𝑥({1o} × 𝐵)
84, 7nfun 4099 . 2 𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵))
91, 8nfcxfr 2905 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2887  cun 3885  c0 4256  {csn 4561   × cxp 5587  1oc1o 8290  cdju 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-un 3892  df-opab 5137  df-xp 5595  df-dju 9659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator