MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdju Structured version   Visualization version   GIF version

Theorem nfdju 9596
Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Hypotheses
Ref Expression
nfdju.1 𝑥𝐴
nfdju.2 𝑥𝐵
Assertion
Ref Expression
nfdju 𝑥(𝐴𝐵)

Proof of Theorem nfdju
StepHypRef Expression
1 df-dju 9590 . 2 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2 nfcv 2906 . . . 4 𝑥{∅}
3 nfdju.1 . . . 4 𝑥𝐴
42, 3nfxp 5613 . . 3 𝑥({∅} × 𝐴)
5 nfcv 2906 . . . 4 𝑥{1o}
6 nfdju.2 . . . 4 𝑥𝐵
75, 6nfxp 5613 . . 3 𝑥({1o} × 𝐵)
84, 7nfun 4095 . 2 𝑥(({∅} × 𝐴) ∪ ({1o} × 𝐵))
91, 8nfcxfr 2904 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2886  cun 3881  c0 4253  {csn 4558   × cxp 5578  1oc1o 8260  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-un 3888  df-opab 5133  df-xp 5586  df-dju 9590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator