MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnadju Structured version   Visualization version   GIF version

Theorem nnadju 9884
Description: The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep 5205, see nnadjuALT 9885. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) Avoid ax-rep 5205. (Revised by BTernaryTau, 2-Jul-2024.)
Assertion
Ref Expression
nnadju ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))

Proof of Theorem nnadju
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djueq2 9595 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
2 oveq2 7263 . . . . . . 7 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
31, 2breq12d 5083 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
43imbi2d 340 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)) ↔ (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵))))
5 djueq2 9595 . . . . . . 7 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ⊔ ∅))
6 oveq2 7263 . . . . . . 7 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
75, 6breq12d 5083 . . . . . 6 (𝑥 = ∅ → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅)))
8 djueq2 9595 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
9 oveq2 7263 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
108, 9breq12d 5083 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝑦) ≈ (𝐴 +o 𝑦)))
11 djueq2 9595 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴𝑥) = (𝐴 ⊔ suc 𝑦))
12 oveq2 7263 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
1311, 12breq12d 5083 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
14 dju0en 9862 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ 𝐴)
15 nna0 8397 . . . . . . 7 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1614, 15breqtrrd 5098 . . . . . 6 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅))
17 1oex 8280 . . . . . . . . . . 11 1o ∈ V
18 djuassen 9865 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω ∧ 1o ∈ V) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
1917, 18mp3an3 1448 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
20 enrefg 8727 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴𝐴)
21 nnord 7695 . . . . . . . . . . . . 13 (𝑦 ∈ ω → Ord 𝑦)
22 ordirr 6269 . . . . . . . . . . . . 13 (Ord 𝑦 → ¬ 𝑦𝑦)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ω → ¬ 𝑦𝑦)
24 dju1en 9858 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ¬ 𝑦𝑦) → (𝑦 ⊔ 1o) ≈ suc 𝑦)
2523, 24mpdan 683 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 ⊔ 1o) ≈ suc 𝑦)
26 djuen 9856 . . . . . . . . . . 11 ((𝐴𝐴 ∧ (𝑦 ⊔ 1o) ≈ suc 𝑦) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
2720, 25, 26syl2an 595 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
28 entr 8747 . . . . . . . . . 10 ((((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)) ∧ (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
2919, 27, 28syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
3029ensymd 8746 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o))
3117enref 8728 . . . . . . . . . . . 12 1o ≈ 1o
32 djuen 9856 . . . . . . . . . . . 12 (((𝐴𝑦) ≈ (𝐴 +o 𝑦) ∧ 1o ≈ 1o) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3331, 32mpan2 687 . . . . . . . . . . 11 ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3433a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o)))
35 nnacl 8404 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
36 nnord 7695 . . . . . . . . . . . . 13 ((𝐴 +o 𝑦) ∈ ω → Ord (𝐴 +o 𝑦))
37 ordirr 6269 . . . . . . . . . . . . 13 (Ord (𝐴 +o 𝑦) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
3835, 36, 373syl 18 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
39 dju1en 9858 . . . . . . . . . . . 12 (((𝐴 +o 𝑦) ∈ ω ∧ ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦)) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
4035, 38, 39syl2anc 583 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
41 nnasuc 8399 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4240, 41breqtrrd 5098 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4334, 42jctird 526 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))))
44 entr 8747 . . . . . . . . 9 ((((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4543, 44syl6 35 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)))
46 entr 8747 . . . . . . . 8 (((𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o) ∧ ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))
4730, 45, 46syl6an 680 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
4847expcom 413 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))))
497, 10, 13, 16, 48finds2 7721 . . . . 5 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)))
504, 49vtoclga 3503 . . . 4 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
5150impcom 407 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ≈ (𝐴 +o 𝐵))
52 carden2b 9656 . . 3 ((𝐴𝐵) ≈ (𝐴 +o 𝐵) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
5351, 52syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
54 nnacl 8404 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
55 cardnn 9652 . . 3 ((𝐴 +o 𝐵) ∈ ω → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5654, 55syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5753, 56eqtrd 2778 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253   class class class wbr 5070  Ord word 6250  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260   +o coa 8264  cen 8688  cdju 9587  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628
This theorem is referenced by:  ficardadju  9886  ackbij1lem5  9911  ackbij1lem9  9915
  Copyright terms: Public domain W3C validator