MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnadju Structured version   Visualization version   GIF version

Theorem nnadju 10238
Description: The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep 5279, see nnadjuALT 10239. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) Avoid ax-rep 5279. (Revised by BTernaryTau, 2-Jul-2024.)
Assertion
Ref Expression
nnadju ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))

Proof of Theorem nnadju
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djueq2 9946 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
2 oveq2 7439 . . . . . . 7 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
31, 2breq12d 5156 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
43imbi2d 340 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)) ↔ (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵))))
5 djueq2 9946 . . . . . . 7 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ⊔ ∅))
6 oveq2 7439 . . . . . . 7 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
75, 6breq12d 5156 . . . . . 6 (𝑥 = ∅ → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅)))
8 djueq2 9946 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
9 oveq2 7439 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
108, 9breq12d 5156 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝑦) ≈ (𝐴 +o 𝑦)))
11 djueq2 9946 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴𝑥) = (𝐴 ⊔ suc 𝑦))
12 oveq2 7439 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
1311, 12breq12d 5156 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
14 dju0en 10216 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ 𝐴)
15 nna0 8642 . . . . . . 7 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1614, 15breqtrrd 5171 . . . . . 6 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅))
17 1oex 8516 . . . . . . . . . . 11 1o ∈ V
18 djuassen 10219 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω ∧ 1o ∈ V) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
1917, 18mp3an3 1452 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
20 enrefg 9024 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴𝐴)
21 nnord 7895 . . . . . . . . . . . . 13 (𝑦 ∈ ω → Ord 𝑦)
22 ordirr 6402 . . . . . . . . . . . . 13 (Ord 𝑦 → ¬ 𝑦𝑦)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ω → ¬ 𝑦𝑦)
24 dju1en 10212 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ¬ 𝑦𝑦) → (𝑦 ⊔ 1o) ≈ suc 𝑦)
2523, 24mpdan 687 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 ⊔ 1o) ≈ suc 𝑦)
26 djuen 10210 . . . . . . . . . . 11 ((𝐴𝐴 ∧ (𝑦 ⊔ 1o) ≈ suc 𝑦) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
2720, 25, 26syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
28 entr 9046 . . . . . . . . . 10 ((((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)) ∧ (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
2919, 27, 28syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
3029ensymd 9045 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o))
3117enref 9025 . . . . . . . . . . . 12 1o ≈ 1o
32 djuen 10210 . . . . . . . . . . . 12 (((𝐴𝑦) ≈ (𝐴 +o 𝑦) ∧ 1o ≈ 1o) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3331, 32mpan2 691 . . . . . . . . . . 11 ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3433a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o)))
35 nnacl 8649 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
36 nnord 7895 . . . . . . . . . . . . 13 ((𝐴 +o 𝑦) ∈ ω → Ord (𝐴 +o 𝑦))
37 ordirr 6402 . . . . . . . . . . . . 13 (Ord (𝐴 +o 𝑦) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
3835, 36, 373syl 18 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
39 dju1en 10212 . . . . . . . . . . . 12 (((𝐴 +o 𝑦) ∈ ω ∧ ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦)) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
4035, 38, 39syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
41 nnasuc 8644 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4240, 41breqtrrd 5171 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4334, 42jctird 526 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))))
44 entr 9046 . . . . . . . . 9 ((((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4543, 44syl6 35 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)))
46 entr 9046 . . . . . . . 8 (((𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o) ∧ ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))
4730, 45, 46syl6an 684 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
4847expcom 413 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))))
497, 10, 13, 16, 48finds2 7920 . . . . 5 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)))
504, 49vtoclga 3577 . . . 4 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
5150impcom 407 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ≈ (𝐴 +o 𝐵))
52 carden2b 10007 . . 3 ((𝐴𝐵) ≈ (𝐴 +o 𝐵) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
5351, 52syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
54 nnacl 8649 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
55 cardnn 10003 . . 3 ((𝐴 +o 𝐵) ∈ ω → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5654, 55syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5753, 56eqtrd 2777 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333   class class class wbr 5143  Ord word 6383  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  1oc1o 8499   +o coa 8503  cen 8982  cdju 9938  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979
This theorem is referenced by:  ficardadju  10240  ackbij1lem5  10263  ackbij1lem9  10267
  Copyright terms: Public domain W3C validator