Step | Hyp | Ref
| Expression |
1 | | djueq2 9595 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝐴 ⊔ 𝑥) = (𝐴 ⊔ 𝐵)) |
2 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) |
3 | 1, 2 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝐴 ⊔ 𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵))) |
4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ⊔ 𝑥) ≈ (𝐴 +o 𝑥)) ↔ (𝐴 ∈ ω → (𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵)))) |
5 | | djueq2 9595 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐴 ⊔ 𝑥) = (𝐴 ⊔ ∅)) |
6 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) |
7 | 5, 6 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝐴 ⊔ 𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ ∅) ≈ (𝐴 +o
∅))) |
8 | | djueq2 9595 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 ⊔ 𝑥) = (𝐴 ⊔ 𝑦)) |
9 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) |
10 | 8, 9 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ⊔ 𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦))) |
11 | | djueq2 9595 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝐴 ⊔ 𝑥) = (𝐴 ⊔ suc 𝑦)) |
12 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) |
13 | 11, 12 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → ((𝐴 ⊔ 𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))) |
14 | | dju0en 9862 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ 𝐴) |
15 | | nna0 8397 |
. . . . . . 7
⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
16 | 14, 15 | breqtrrd 5098 |
. . . . . 6
⊢ (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈
(𝐴 +o
∅)) |
17 | | 1oex 8280 |
. . . . . . . . . . 11
⊢
1o ∈ V |
18 | | djuassen 9865 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω ∧
1o ∈ V) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o))) |
19 | 17, 18 | mp3an3 1448 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o))) |
20 | | enrefg 8727 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) |
21 | | nnord 7695 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω → Ord 𝑦) |
22 | | ordirr 6269 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑦 → ¬ 𝑦 ∈ 𝑦) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ω → ¬
𝑦 ∈ 𝑦) |
24 | | dju1en 9858 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ ¬
𝑦 ∈ 𝑦) → (𝑦 ⊔ 1o) ≈ suc 𝑦) |
25 | 23, 24 | mpdan 683 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → (𝑦 ⊔ 1o) ≈
suc 𝑦) |
26 | | djuen 9856 |
. . . . . . . . . . 11
⊢ ((𝐴 ≈ 𝐴 ∧ (𝑦 ⊔ 1o) ≈ suc 𝑦) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦)) |
27 | 20, 25, 26 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦)) |
28 | | entr 8747 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)) ∧ (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦)) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦)) |
29 | 19, 27, 28 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦)) |
30 | 29 | ensymd 8746 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ suc 𝑦) ≈ ((𝐴 ⊔ 𝑦) ⊔ 1o)) |
31 | 17 | enref 8728 |
. . . . . . . . . . . 12
⊢
1o ≈ 1o |
32 | | djuen 9856 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦) ∧ 1o ≈ 1o)
→ ((𝐴 ⊔ 𝑦) ⊔ 1o)
≈ ((𝐴 +o
𝑦) ⊔
1o)) |
33 | 31, 32 | mpan2 687 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔
1o)) |
34 | 33 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔
1o))) |
35 | | nnacl 8404 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈
ω) |
36 | | nnord 7695 |
. . . . . . . . . . . . 13
⊢ ((𝐴 +o 𝑦) ∈ ω → Ord
(𝐴 +o 𝑦)) |
37 | | ordirr 6269 |
. . . . . . . . . . . . 13
⊢ (Ord
(𝐴 +o 𝑦) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦)) |
38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ¬
(𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦)) |
39 | | dju1en 9858 |
. . . . . . . . . . . 12
⊢ (((𝐴 +o 𝑦) ∈ ω ∧ ¬
(𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦)) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦)) |
40 | 35, 38, 39 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o)
≈ suc (𝐴
+o 𝑦)) |
41 | | nnasuc 8399 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) |
42 | 40, 41 | breqtrrd 5098 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o)
≈ (𝐴 +o
suc 𝑦)) |
43 | 34, 42 | jctird 526 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦) → (((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧
((𝐴 +o 𝑦) ⊔ 1o)
≈ (𝐴 +o
suc 𝑦)))) |
44 | | entr 8747 |
. . . . . . . . 9
⊢ ((((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧
((𝐴 +o 𝑦) ⊔ 1o)
≈ (𝐴 +o
suc 𝑦)) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) |
45 | 43, 44 | syl6 35 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))) |
46 | | entr 8747 |
. . . . . . . 8
⊢ (((𝐴 ⊔ suc 𝑦) ≈ ((𝐴 ⊔ 𝑦) ⊔ 1o) ∧ ((𝐴 ⊔ 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)) |
47 | 30, 45, 46 | syl6an 680 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))) |
48 | 47 | expcom 413 |
. . . . . 6
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ⊔ 𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))) |
49 | 7, 10, 13, 16, 48 | finds2 7721 |
. . . . 5
⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ⊔ 𝑥) ≈ (𝐴 +o 𝑥))) |
50 | 4, 49 | vtoclga 3503 |
. . . 4
⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵))) |
51 | 50 | impcom 407 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵)) |
52 | | carden2b 9656 |
. . 3
⊢ ((𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵) → (card‘(𝐴 ⊔ 𝐵)) = (card‘(𝐴 +o 𝐵))) |
53 | 51, 52 | syl 17 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(card‘(𝐴 ⊔
𝐵)) = (card‘(𝐴 +o 𝐵))) |
54 | | nnacl 8404 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) |
55 | | cardnn 9652 |
. . 3
⊢ ((𝐴 +o 𝐵) ∈ ω → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵)) |
56 | 54, 55 | syl 17 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(card‘(𝐴
+o 𝐵)) = (𝐴 +o 𝐵)) |
57 | 53, 56 | eqtrd 2778 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) →
(card‘(𝐴 ⊔
𝐵)) = (𝐴 +o 𝐵)) |