MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnadju Structured version   Visualization version   GIF version

Theorem nnadju 10158
Description: The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep 5237, see nnadjuALT 10159. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) Avoid ax-rep 5237. (Revised by BTernaryTau, 2-Jul-2024.)
Assertion
Ref Expression
nnadju ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))

Proof of Theorem nnadju
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djueq2 9866 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
2 oveq2 7398 . . . . . . 7 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
31, 2breq12d 5123 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
43imbi2d 340 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)) ↔ (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵))))
5 djueq2 9866 . . . . . . 7 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ⊔ ∅))
6 oveq2 7398 . . . . . . 7 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
75, 6breq12d 5123 . . . . . 6 (𝑥 = ∅ → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅)))
8 djueq2 9866 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
9 oveq2 7398 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
108, 9breq12d 5123 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝑦) ≈ (𝐴 +o 𝑦)))
11 djueq2 9866 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴𝑥) = (𝐴 ⊔ suc 𝑦))
12 oveq2 7398 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
1311, 12breq12d 5123 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
14 dju0en 10136 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ 𝐴)
15 nna0 8571 . . . . . . 7 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1614, 15breqtrrd 5138 . . . . . 6 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅))
17 1oex 8447 . . . . . . . . . . 11 1o ∈ V
18 djuassen 10139 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω ∧ 1o ∈ V) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
1917, 18mp3an3 1452 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
20 enrefg 8958 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴𝐴)
21 nnord 7853 . . . . . . . . . . . . 13 (𝑦 ∈ ω → Ord 𝑦)
22 ordirr 6353 . . . . . . . . . . . . 13 (Ord 𝑦 → ¬ 𝑦𝑦)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ω → ¬ 𝑦𝑦)
24 dju1en 10132 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ¬ 𝑦𝑦) → (𝑦 ⊔ 1o) ≈ suc 𝑦)
2523, 24mpdan 687 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 ⊔ 1o) ≈ suc 𝑦)
26 djuen 10130 . . . . . . . . . . 11 ((𝐴𝐴 ∧ (𝑦 ⊔ 1o) ≈ suc 𝑦) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
2720, 25, 26syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
28 entr 8980 . . . . . . . . . 10 ((((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)) ∧ (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
2919, 27, 28syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
3029ensymd 8979 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o))
3117enref 8959 . . . . . . . . . . . 12 1o ≈ 1o
32 djuen 10130 . . . . . . . . . . . 12 (((𝐴𝑦) ≈ (𝐴 +o 𝑦) ∧ 1o ≈ 1o) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3331, 32mpan2 691 . . . . . . . . . . 11 ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3433a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o)))
35 nnacl 8578 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
36 nnord 7853 . . . . . . . . . . . . 13 ((𝐴 +o 𝑦) ∈ ω → Ord (𝐴 +o 𝑦))
37 ordirr 6353 . . . . . . . . . . . . 13 (Ord (𝐴 +o 𝑦) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
3835, 36, 373syl 18 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
39 dju1en 10132 . . . . . . . . . . . 12 (((𝐴 +o 𝑦) ∈ ω ∧ ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦)) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
4035, 38, 39syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
41 nnasuc 8573 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4240, 41breqtrrd 5138 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4334, 42jctird 526 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))))
44 entr 8980 . . . . . . . . 9 ((((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4543, 44syl6 35 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)))
46 entr 8980 . . . . . . . 8 (((𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o) ∧ ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))
4730, 45, 46syl6an 684 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
4847expcom 413 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))))
497, 10, 13, 16, 48finds2 7877 . . . . 5 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)))
504, 49vtoclga 3546 . . . 4 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
5150impcom 407 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ≈ (𝐴 +o 𝐵))
52 carden2b 9927 . . 3 ((𝐴𝐵) ≈ (𝐴 +o 𝐵) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
5351, 52syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
54 nnacl 8578 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
55 cardnn 9923 . . 3 ((𝐴 +o 𝐵) ∈ ω → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5654, 55syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5753, 56eqtrd 2765 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299   class class class wbr 5110  Ord word 6334  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  1oc1o 8430   +o coa 8434  cen 8918  cdju 9858  cardccrd 9895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899
This theorem is referenced by:  ficardadju  10160  ackbij1lem5  10183  ackbij1lem9  10187
  Copyright terms: Public domain W3C validator