MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnadju Structured version   Visualization version   GIF version

Theorem nnadju 9953
Description: The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep 5209, see nnadjuALT 9954. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) Avoid ax-rep 5209. (Revised by BTernaryTau, 2-Jul-2024.)
Assertion
Ref Expression
nnadju ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))

Proof of Theorem nnadju
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djueq2 9664 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥) = (𝐴𝐵))
2 oveq2 7283 . . . . . . 7 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
31, 2breq12d 5087 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
43imbi2d 341 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)) ↔ (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵))))
5 djueq2 9664 . . . . . . 7 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ⊔ ∅))
6 oveq2 7283 . . . . . . 7 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
75, 6breq12d 5087 . . . . . 6 (𝑥 = ∅ → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅)))
8 djueq2 9664 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
9 oveq2 7283 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
108, 9breq12d 5087 . . . . . 6 (𝑥 = 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴𝑦) ≈ (𝐴 +o 𝑦)))
11 djueq2 9664 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴𝑥) = (𝐴 ⊔ suc 𝑦))
12 oveq2 7283 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
1311, 12breq12d 5087 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴𝑥) ≈ (𝐴 +o 𝑥) ↔ (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
14 dju0en 9931 . . . . . . 7 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ 𝐴)
15 nna0 8435 . . . . . . 7 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1614, 15breqtrrd 5102 . . . . . 6 (𝐴 ∈ ω → (𝐴 ⊔ ∅) ≈ (𝐴 +o ∅))
17 1oex 8307 . . . . . . . . . . 11 1o ∈ V
18 djuassen 9934 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω ∧ 1o ∈ V) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
1917, 18mp3an3 1449 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)))
20 enrefg 8772 . . . . . . . . . . 11 (𝐴 ∈ ω → 𝐴𝐴)
21 nnord 7720 . . . . . . . . . . . . 13 (𝑦 ∈ ω → Ord 𝑦)
22 ordirr 6284 . . . . . . . . . . . . 13 (Ord 𝑦 → ¬ 𝑦𝑦)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ω → ¬ 𝑦𝑦)
24 dju1en 9927 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ¬ 𝑦𝑦) → (𝑦 ⊔ 1o) ≈ suc 𝑦)
2523, 24mpdan 684 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 ⊔ 1o) ≈ suc 𝑦)
26 djuen 9925 . . . . . . . . . . 11 ((𝐴𝐴 ∧ (𝑦 ⊔ 1o) ≈ suc 𝑦) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
2720, 25, 26syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦))
28 entr 8792 . . . . . . . . . 10 ((((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ (𝑦 ⊔ 1o)) ∧ (𝐴 ⊔ (𝑦 ⊔ 1o)) ≈ (𝐴 ⊔ suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
2919, 27, 28syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 ⊔ suc 𝑦))
3029ensymd 8791 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o))
3117enref 8773 . . . . . . . . . . . 12 1o ≈ 1o
32 djuen 9925 . . . . . . . . . . . 12 (((𝐴𝑦) ≈ (𝐴 +o 𝑦) ∧ 1o ≈ 1o) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3331, 32mpan2 688 . . . . . . . . . . 11 ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o))
3433a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o)))
35 nnacl 8442 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
36 nnord 7720 . . . . . . . . . . . . 13 ((𝐴 +o 𝑦) ∈ ω → Ord (𝐴 +o 𝑦))
37 ordirr 6284 . . . . . . . . . . . . 13 (Ord (𝐴 +o 𝑦) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
3835, 36, 373syl 18 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦))
39 dju1en 9927 . . . . . . . . . . . 12 (((𝐴 +o 𝑦) ∈ ω ∧ ¬ (𝐴 +o 𝑦) ∈ (𝐴 +o 𝑦)) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
4035, 38, 39syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ suc (𝐴 +o 𝑦))
41 nnasuc 8437 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4240, 41breqtrrd 5102 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4334, 42jctird 527 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))))
44 entr 8792 . . . . . . . . 9 ((((𝐴𝑦) ⊔ 1o) ≈ ((𝐴 +o 𝑦) ⊔ 1o) ∧ ((𝐴 +o 𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦))
4543, 44syl6 35 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)))
46 entr 8792 . . . . . . . 8 (((𝐴 ⊔ suc 𝑦) ≈ ((𝐴𝑦) ⊔ 1o) ∧ ((𝐴𝑦) ⊔ 1o) ≈ (𝐴 +o suc 𝑦)) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))
4730, 45, 46syl6an 681 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦)))
4847expcom 414 . . . . . 6 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦) ≈ (𝐴 +o 𝑦) → (𝐴 ⊔ suc 𝑦) ≈ (𝐴 +o suc 𝑦))))
497, 10, 13, 16, 48finds2 7747 . . . . 5 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴𝑥) ≈ (𝐴 +o 𝑥)))
504, 49vtoclga 3513 . . . 4 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵) ≈ (𝐴 +o 𝐵)))
5150impcom 408 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ≈ (𝐴 +o 𝐵))
52 carden2b 9725 . . 3 ((𝐴𝐵) ≈ (𝐴 +o 𝐵) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
5351, 52syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (card‘(𝐴 +o 𝐵)))
54 nnacl 8442 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
55 cardnn 9721 . . 3 ((𝐴 +o 𝐵) ∈ ω → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5654, 55syl 17 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
5753, 56eqtrd 2778 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴𝐵)) = (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256   class class class wbr 5074  Ord word 6265  suc csuc 6268  cfv 6433  (class class class)co 7275  ωcom 7712  1oc1o 8290   +o coa 8294  cen 8730  cdju 9656  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697
This theorem is referenced by:  ficardadju  9955  ackbij1lem5  9980  ackbij1lem9  9984
  Copyright terms: Public domain W3C validator