MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex2 Structured version   Visualization version   GIF version

Theorem drex2 2450
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2380. Usage of exbidv 1920 is preferred, which requires fewer axioms. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drex2 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))

Proof of Theorem drex2
StepHypRef Expression
1 nfae 2441 . 2 𝑧𝑥 𝑥 = 𝑦
2 dral1.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2exbid 2224 1 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782
This theorem is referenced by:  dfid3  5596  dropab1  44416  dropab2  44417  e2ebind  44534
  Copyright terms: Public domain W3C validator