![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drex2 | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
dral1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
drex2 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2453 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | dral1.1 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | exbid 2266 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1654 ∃wex 1878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 |
This theorem is referenced by: dfid3 5253 dropab1 39488 dropab2 39489 e2ebind 39606 |
Copyright terms: Public domain | W3C validator |