MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex2 Structured version   Visualization version   GIF version

Theorem drex2 2443
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2373. Usage of exbidv 1927 is preferred, which requires fewer axioms. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drex2 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))

Proof of Theorem drex2
StepHypRef Expression
1 nfae 2434 . 2 𝑧𝑥 𝑥 = 𝑦
2 dral1.1 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2exbid 2219 1 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-11 2157  ax-12 2174  ax-13 2373
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790
This theorem is referenced by:  dfid3  5491  dropab1  42018  dropab2  42019  e2ebind  42136
  Copyright terms: Public domain W3C validator