Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab2 Structured version   Visualization version   GIF version

Theorem dropab2 44417
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab2 (∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑})

Proof of Theorem dropab2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4898 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑦⟩)
21sps 2186 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑦⟩)
32eqeq2d 2751 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑧, 𝑥⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
43anbi1d 630 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
54drex1 2449 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
65drex2 2450 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
76abbidv 2811 . 2 (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)})
8 df-opab 5229 . 2 {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑)}
9 df-opab 5229 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)}
107, 8, 93eqtr4g 2805 1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  {cab 2717  cop 4654  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator