| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dropab2 | Structured version Visualization version GIF version | ||
| Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| dropab2 | ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 4855 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 〈𝑧, 𝑥〉 = 〈𝑧, 𝑦〉) | |
| 2 | 1 | sps 2186 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → 〈𝑧, 𝑥〉 = 〈𝑧, 𝑦〉) |
| 3 | 2 | eqeq2d 2747 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 = 〈𝑧, 𝑥〉 ↔ 𝑤 = 〈𝑧, 𝑦〉)) |
| 4 | 3 | anbi1d 631 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑))) |
| 5 | 4 | drex1 2446 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑))) |
| 6 | 5 | drex2 2447 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑) ↔ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑))) |
| 7 | 6 | abbidv 2802 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑧∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑)}) |
| 8 | df-opab 5187 | . 2 ⊢ {〈𝑧, 𝑥〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑧∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑)} | |
| 9 | df-opab 5187 | . 2 ⊢ {〈𝑧, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑)} | |
| 10 | 7, 8, 9 | 3eqtr4g 2796 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2714 〈cop 4612 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |