![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dropab2 | Structured version Visualization version GIF version |
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dropab2 | ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 4541 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 〈𝑧, 𝑥〉 = 〈𝑧, 𝑦〉) | |
2 | 1 | sps 2209 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → 〈𝑧, 𝑥〉 = 〈𝑧, 𝑦〉) |
3 | 2 | eqeq2d 2781 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑤 = 〈𝑧, 𝑥〉 ↔ 𝑤 = 〈𝑧, 𝑦〉)) |
4 | 3 | anbi1d 609 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑))) |
5 | 4 | drex1 2477 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑))) |
6 | 5 | drex2 2478 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑) ↔ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑))) |
7 | 6 | abbidv 2890 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑧∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑)}) |
8 | df-opab 4848 | . 2 ⊢ {〈𝑧, 𝑥〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑧∃𝑥(𝑤 = 〈𝑧, 𝑥〉 ∧ 𝜑)} | |
9 | df-opab 4848 | . 2 ⊢ {〈𝑧, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ 𝜑)} | |
10 | 7, 8, 9 | 3eqtr4g 2830 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → {〈𝑧, 𝑥〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∀wal 1629 = wceq 1631 ∃wex 1852 {cab 2757 〈cop 4323 {copab 4847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rab 3070 df-v 3353 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-nul 4065 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-opab 4848 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |