Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab2 Structured version   Visualization version   GIF version

Theorem dropab2 40770
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab2 (∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑})

Proof of Theorem dropab2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4796 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑦⟩)
21sps 2177 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑦⟩)
32eqeq2d 2830 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑧, 𝑥⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
43anbi1d 631 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
54drex1 2457 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
65drex2 2458 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
76abbidv 2883 . 2 (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)})
8 df-opab 5120 . 2 {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑)}
9 df-opab 5120 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)}
107, 8, 93eqtr4g 2879 1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1529   = wceq 1531  wex 1774  {cab 2797  cop 4565  {copab 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-13 2384  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-opab 5120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator