Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e2ebind Structured version   Visualization version   GIF version

Theorem e2ebind 42183
Description: Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. e2ebind 42183 is derived from e2ebindVD 42532. (Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
e2ebind (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))

Proof of Theorem e2ebind
StepHypRef Expression
1 biidd 261 . . . . . 6 (∀𝑦 𝑦 = 𝑥 → (𝜑𝜑))
21drex1 2441 . . . . 5 (∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑))
32drex2 2442 . . . 4 (∀𝑦 𝑦 = 𝑥 → (∃𝑦𝑦𝜑 ↔ ∃𝑦𝑥𝜑))
4 excom 2162 . . . 4 (∃𝑦𝑥𝜑 ↔ ∃𝑥𝑦𝜑)
53, 4bitrdi 287 . . 3 (∀𝑦 𝑦 = 𝑥 → (∃𝑦𝑦𝜑 ↔ ∃𝑥𝑦𝜑))
6 nfe1 2147 . . . 4 𝑦𝑦𝜑
7619.9 2198 . . 3 (∃𝑦𝑦𝜑 ↔ ∃𝑦𝜑)
85, 7bitr3di 286 . 2 (∀𝑦 𝑦 = 𝑥 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
98aecoms 2428 1 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator