Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > e2ebind | Structured version Visualization version GIF version |
Description: Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. e2ebind 42072 is derived from e2ebindVD 42421. (Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
e2ebind | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 261 | . . . . . 6 ⊢ (∀𝑦 𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
2 | 1 | drex1 2441 | . . . . 5 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑦𝜑 ↔ ∃𝑥𝜑)) |
3 | 2 | drex2 2442 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑)) |
4 | excom 2164 | . . . 4 ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) | |
5 | 3, 4 | bitrdi 286 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑦∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜑)) |
6 | nfe1 2149 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
7 | 6 | 19.9 2201 | . . 3 ⊢ (∃𝑦∃𝑦𝜑 ↔ ∃𝑦𝜑) |
8 | 5, 7 | bitr3di 285 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
9 | 8 | aecoms 2428 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥∃𝑦𝜑 ↔ ∃𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |