MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex1 Structured version   Visualization version   GIF version

Theorem drex1 2434
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2365. Use the weaker drex1v 2362 if possible. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drex1 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))

Proof of Theorem drex1
StepHypRef Expression
1 dral1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
21notbid 317 . . . 4 (∀𝑥 𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32dral1 2432 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓))
43notbid 317 . 2 (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓))
5 df-ex 1774 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
6 df-ex 1774 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
74, 5, 63bitr4g 313 1 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1531  wex 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-12 2166  ax-13 2365
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778
This theorem is referenced by:  exdistrf  2440  drsb1  2488  eujustALT  2560  copsexg  5496  dfid3  5582  dropab1  44058  dropab2  44059  e2ebind  44176  e2ebindVD  44525  e2ebindALT  44542
  Copyright terms: Public domain W3C validator