![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > drex1 | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Usage of this theorem is discouraged because it depends on ax-13 2365. Use the weaker drex1v 2362 if possible. (Contributed by NM, 27-Feb-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dral1.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
drex1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dral1.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | dral1 2432 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)) |
4 | 3 | notbid 317 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 ¬ 𝜑 ↔ ¬ ∀𝑦 ¬ 𝜓)) |
5 | df-ex 1774 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
6 | df-ex 1774 | . 2 ⊢ (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1531 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-12 2166 ax-13 2365 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-nf 1778 |
This theorem is referenced by: exdistrf 2440 drsb1 2488 eujustALT 2560 copsexg 5496 dfid3 5582 dropab1 44058 dropab2 44059 e2ebind 44176 e2ebindVD 44525 e2ebindALT 44542 |
Copyright terms: Public domain | W3C validator |