MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid3 Structured version   Visualization version   GIF version

Theorem dfid3 5455
Description: A stronger version of df-id 5453 that does not require 𝑥 and 𝑦 to be disjoint. This is not the "official" definition since our definition soundness check without this requirement would be much more complex. The proof can be instructive in showing how disjoint variable requirements may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.) (Revised by Mario Carneiro, 18-Nov-2016.) Use directly the definition df-id 5453 when sufficient, since the derivation of dfid3 5455 is nontrivial and uses auxiliary axioms ax-10 2136 to ax-13 2381. (New usage is discouraged.)
Assertion
Ref Expression
dfid3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}

Proof of Theorem dfid3
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5453 . 2 I = {⟨𝑥, 𝑧⟩ ∣ 𝑥 = 𝑧}
2 equcom 2016 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
32anbi1ci 625 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑧 = 𝑥𝑤 = ⟨𝑥, 𝑧⟩))
43exbii 1839 . . . . . . . . 9 (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑧(𝑧 = 𝑥𝑤 = ⟨𝑥, 𝑧⟩))
5 opeq2 4796 . . . . . . . . . . 11 (𝑧 = 𝑥 → ⟨𝑥, 𝑧⟩ = ⟨𝑥, 𝑥⟩)
65eqeq2d 2829 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑥, 𝑥⟩))
76equsexvw 2002 . . . . . . . . 9 (∃𝑧(𝑧 = 𝑥𝑤 = ⟨𝑥, 𝑧⟩) ↔ 𝑤 = ⟨𝑥, 𝑥⟩)
8 equid 2010 . . . . . . . . . 10 𝑥 = 𝑥
98biantru 530 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑥⟩ ↔ (𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
104, 7, 93bitri 298 . . . . . . . 8 (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
1110exbii 1839 . . . . . . 7 (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
12 nfe1 2145 . . . . . . . 8 𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥)
131219.9 2195 . . . . . . 7 (∃𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ ∃𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
1411, 13bitr4i 279 . . . . . 6 (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
15 opeq2 4796 . . . . . . . . . . 11 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
1615eqeq2d 2829 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑤 = ⟨𝑥, 𝑥⟩ ↔ 𝑤 = ⟨𝑥, 𝑦⟩))
17 equequ2 2024 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 = 𝑥𝑥 = 𝑦))
1816, 17anbi12d 630 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
1918sps 2174 . . . . . . . 8 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
2019drex1 2455 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
2120drex2 2456 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
2214, 21syl5bb 284 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
23 nfnae 2448 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
24 nfnae 2448 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
25 nfcvd 2975 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑤)
26 nfcvf2 3005 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
27 nfcvd 2975 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑧)
2826, 27nfopd 4812 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥, 𝑧⟩)
2925, 28nfeqd 2985 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑤 = ⟨𝑥, 𝑧⟩)
3026, 27nfeqd 2985 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 = 𝑧)
3129, 30nfand 1889 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧))
32 opeq2 4796 . . . . . . . . . 10 (𝑧 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑥, 𝑦⟩)
3332eqeq2d 2829 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑥, 𝑦⟩))
34 equequ2 2024 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
3533, 34anbi12d 630 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
3635a1i 11 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦))))
3724, 31, 36cbvexd 2420 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
3823, 37exbid 2215 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
3922, 38pm2.61i 183 . . . 4 (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦))
4039abbii 2883 . . 3 {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)}
41 df-opab 5120 . . 3 {⟨𝑥, 𝑧⟩ ∣ 𝑥 = 𝑧} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧)}
42 df-opab 5120 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)}
4340, 41, 423eqtr4i 2851 . 2 {⟨𝑥, 𝑧⟩ ∣ 𝑥 = 𝑧} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
441, 43eqtri 2841 1 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1526   = wceq 1528  wex 1771  {cab 2796  cop 4563  {copab 5119   I cid 5452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2381  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-opab 5120  df-id 5453
This theorem is referenced by:  dfid2  5456
  Copyright terms: Public domain W3C validator