MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaeq Structured version   Visualization version   GIF version

Theorem iotaeq 6310
Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
iotaeq (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))

Proof of Theorem iotaeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 drsb1 2499 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
2 df-clab 2717 . . . . . . 7 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
3 df-clab 2717 . . . . . . 7 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
41, 2, 33bitr4g 317 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜑}))
54eqrdv 2736 . . . . 5 (∀𝑥 𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜑})
65eqeq1d 2740 . . . 4 (∀𝑥 𝑥 = 𝑦 → ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜑} = {𝑧}))
76abbidv 2802 . . 3 (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
87unieqd 4810 . 2 (∀𝑥 𝑥 = 𝑦 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
9 df-iota 6297 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
10 df-iota 6297 . 2 (℩𝑦𝜑) = {𝑧 ∣ {𝑦𝜑} = {𝑧}}
118, 9, 103eqtr4g 2798 1 (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   = wceq 1542  [wsb 2074  wcel 2114  {cab 2716  {csn 4516   cuni 4796  cio 6295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-12 2179  ax-13 2372  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-in 3850  df-ss 3860  df-uni 4797  df-iota 6297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator