![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaeq | Structured version Visualization version GIF version |
Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iotaeq | ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsb1 2498 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
2 | df-clab 2713 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
3 | df-clab 2713 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
4 | 1, 2, 3 | 3bitr4g 314 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜑})) |
5 | 4 | eqrdv 2733 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑}) |
6 | 5 | eqeq1d 2737 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
7 | 6 | abbidv 2806 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) |
8 | 7 | unieqd 4925 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) |
9 | df-iota 6516 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
10 | df-iota 6516 | . 2 ⊢ (℩𝑦𝜑) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}} | |
11 | 8, 9, 10 | 3eqtr4g 2800 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 [wsb 2062 ∈ wcel 2106 {cab 2712 {csn 4631 ∪ cuni 4912 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-13 2375 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 df-iota 6516 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |