MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotaeq Structured version   Visualization version   GIF version

Theorem iotaeq 6528
Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
iotaeq (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))

Proof of Theorem iotaeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 drsb1 2498 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
2 df-clab 2713 . . . . . . 7 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
3 df-clab 2713 . . . . . . 7 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
41, 2, 33bitr4g 314 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜑}))
54eqrdv 2733 . . . . 5 (∀𝑥 𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜑})
65eqeq1d 2737 . . . 4 (∀𝑥 𝑥 = 𝑦 → ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜑} = {𝑧}))
76abbidv 2806 . . 3 (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
87unieqd 4925 . 2 (∀𝑥 𝑥 = 𝑦 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
9 df-iota 6516 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
10 df-iota 6516 . 2 (℩𝑦𝜑) = {𝑧 ∣ {𝑦𝜑} = {𝑧}}
118, 9, 103eqtr4g 2800 1 (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  [wsb 2062  wcel 2106  {cab 2712  {csn 4631   cuni 4912  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-13 2375  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-uni 4913  df-iota 6516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator