![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotaeq | Structured version Visualization version GIF version |
Description: Equality theorem for descriptions. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by Andrew Salmon, 30-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
iotaeq | ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsb1 2503 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
2 | df-clab 2718 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
3 | df-clab 2718 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
4 | 1, 2, 3 | 3bitr4g 314 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜑})) |
5 | 4 | eqrdv 2738 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑}) |
6 | 5 | eqeq1d 2742 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜑} = {𝑧})) |
7 | 6 | abbidv 2811 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) |
8 | 7 | unieqd 4944 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) |
9 | df-iota 6525 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
10 | df-iota 6525 | . 2 ⊢ (℩𝑦𝜑) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}} | |
11 | 8, 9, 10 | 3eqtr4g 2805 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 {csn 4648 ∪ cuni 4931 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-13 2380 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |