Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dveeq1-o | Structured version Visualization version GIF version |
Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq1 2387 using ax-c11 . (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dveeq1-o | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1911 | . 2 ⊢ (𝑤 = 𝑧 → ∀𝑥 𝑤 = 𝑧) | |
2 | ax-5 1911 | . 2 ⊢ (𝑦 = 𝑧 → ∀𝑤 𝑦 = 𝑧) | |
3 | equequ1 2032 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
4 | 1, 2, 3 | dvelimf-o 36505 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-11 2158 ax-12 2175 ax-13 2379 ax-c5 36459 ax-c4 36460 ax-c7 36461 ax-c10 36462 ax-c11 36463 ax-c9 36466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 |
This theorem is referenced by: ax12inda2ALT 36522 |
Copyright terms: Public domain | W3C validator |