Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dveeq1-o Structured version   Visualization version   GIF version

Theorem dveeq1-o 38936
Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq1 2385 using ax-c11 . (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveeq1-o (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq1-o
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1910 . 2 (𝑤 = 𝑧 → ∀𝑥 𝑤 = 𝑧)
2 ax-5 1910 . 2 (𝑦 = 𝑧 → ∀𝑤 𝑦 = 𝑧)
3 equequ1 2024 . 2 (𝑤 = 𝑦 → (𝑤 = 𝑧𝑦 = 𝑧))
41, 2, 3dvelimf-o 38930 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2377  ax-c5 38884  ax-c4 38885  ax-c7 38886  ax-c10 38887  ax-c11 38888  ax-c9 38891
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784
This theorem is referenced by:  ax12inda2ALT  38947
  Copyright terms: Public domain W3C validator