|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dveeq1-o | Structured version Visualization version GIF version | ||
| Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq1 2385 using ax-c11 . (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| dveeq1-o | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝑤 = 𝑧 → ∀𝑥 𝑤 = 𝑧) | |
| 2 | ax-5 1910 | . 2 ⊢ (𝑦 = 𝑧 → ∀𝑤 𝑦 = 𝑧) | |
| 3 | equequ1 2024 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 4 | 1, 2, 3 | dvelimf-o 38930 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-c5 38884 ax-c4 38885 ax-c7 38886 ax-c10 38887 ax-c11 38888 ax-c9 38891 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: ax12inda2ALT 38947 | 
| Copyright terms: Public domain | W3C validator |