Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsepg2ALT Structured version   Visualization version   GIF version

Theorem axsepg2ALT 35059
Description: Alternate proof of axsepg2 35058, derived directly from ax-sep 5317 with no additional set theory axioms. (Contributed by BTernaryTau, 3-Aug-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axsepg2ALT 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧   𝑥,𝑧   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem axsepg2ALT
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . 3 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
2 nfvd 1914 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑥𝑤)
3 nfcvf 2938 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑧𝑦𝑧)
43nfcrd 2902 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑥𝑧)
5 nfvd 1914 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝜑)
64, 5nfand 1896 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(𝑥𝑧𝜑))
72, 6nfbid 1901 . . 3 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(𝑥𝑤 ↔ (𝑥𝑧𝜑)))
81, 7nfald 2332 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑)))
9 nfvd 1914 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑤𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)))
10 elequ2 2123 . . . . . 6 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
1110bibi1d 343 . . . . 5 (𝑤 = 𝑦 → ((𝑥𝑤 ↔ (𝑥𝑧𝜑)) ↔ (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1211biimpd 229 . . . 4 (𝑤 = 𝑦 → ((𝑥𝑤 ↔ (𝑥𝑧𝜑)) → (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1312alimdv 1915 . . 3 (𝑤 = 𝑦 → (∀𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1413a1i 11 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → (𝑤 = 𝑦 → (∀𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)))))
15 elequ2 2123 . . . . . . 7 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
1615anbi1d 630 . . . . . 6 (𝑦 = 𝑧 → ((𝑥𝑦𝜑) ↔ (𝑥𝑧𝜑)))
1716bibi2d 342 . . . . 5 (𝑦 = 𝑧 → ((𝑥𝑦 ↔ (𝑥𝑦𝜑)) ↔ (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1817biimpd 229 . . . 4 (𝑦 = 𝑧 → ((𝑥𝑦 ↔ (𝑥𝑦𝜑)) → (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1918alimdv 1915 . . 3 (𝑦 = 𝑧 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
2019sps 2186 . 2 (∀𝑦 𝑦 = 𝑧 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
21 ax-sep 5317 . 2 𝑤𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑))
22 ax-sep 5317 . . 3 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥))
23 fal 1551 . . . . . . 7 ¬ ⊥
2423intnan 486 . . . . . 6 ¬ (𝑥𝑣 ∧ ⊥)
25 biimp 215 . . . . . 6 ((𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → (𝑥𝑦 → (𝑥𝑣 ∧ ⊥)))
2624, 25mtoi 199 . . . . 5 ((𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → ¬ 𝑥𝑦)
2726bianfd 534 . . . 4 ((𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → (𝑥𝑦 ↔ (𝑥𝑦𝜑)))
2827alimi 1809 . . 3 (∀𝑥(𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑)))
2922, 28eximii 1835 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑))
308, 9, 14, 20, 21, 29dvelimexcasei 35054 1 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wfal 1549  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-clel 2819  df-nfc 2895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator