Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsepg2ALT Structured version   Visualization version   GIF version

Theorem axsepg2ALT 35090
Description: Alternate proof of axsepg2 35089, derived directly from ax-sep 5234 with no additional set theory axioms. (Contributed by BTernaryTau, 3-Aug-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axsepg2ALT 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧   𝑥,𝑧   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem axsepg2ALT
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . 3 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
2 nfvd 1916 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑥𝑤)
3 nfcvf 2921 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑧𝑦𝑧)
43nfcrd 2888 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑥𝑧)
5 nfvd 1916 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝜑)
64, 5nfand 1898 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(𝑥𝑧𝜑))
72, 6nfbid 1903 . . 3 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(𝑥𝑤 ↔ (𝑥𝑧𝜑)))
81, 7nfald 2329 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑)))
9 nfvd 1916 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑤𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)))
10 elequ2 2126 . . . . . 6 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
1110bibi1d 343 . . . . 5 (𝑤 = 𝑦 → ((𝑥𝑤 ↔ (𝑥𝑧𝜑)) ↔ (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1211biimpd 229 . . . 4 (𝑤 = 𝑦 → ((𝑥𝑤 ↔ (𝑥𝑧𝜑)) → (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1312alimdv 1917 . . 3 (𝑤 = 𝑦 → (∀𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1413a1i 11 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → (𝑤 = 𝑦 → (∀𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)))))
15 elequ2 2126 . . . . . . 7 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
1615anbi1d 631 . . . . . 6 (𝑦 = 𝑧 → ((𝑥𝑦𝜑) ↔ (𝑥𝑧𝜑)))
1716bibi2d 342 . . . . 5 (𝑦 = 𝑧 → ((𝑥𝑦 ↔ (𝑥𝑦𝜑)) ↔ (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1817biimpd 229 . . . 4 (𝑦 = 𝑧 → ((𝑥𝑦 ↔ (𝑥𝑦𝜑)) → (𝑥𝑦 ↔ (𝑥𝑧𝜑))))
1918alimdv 1917 . . 3 (𝑦 = 𝑧 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
2019sps 2188 . 2 (∀𝑦 𝑦 = 𝑧 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))))
21 ax-sep 5234 . 2 𝑤𝑥(𝑥𝑤 ↔ (𝑥𝑧𝜑))
22 ax-sep 5234 . . 3 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥))
23 fal 1555 . . . . . . 7 ¬ ⊥
2423intnan 486 . . . . . 6 ¬ (𝑥𝑣 ∧ ⊥)
25 biimp 215 . . . . . 6 ((𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → (𝑥𝑦 → (𝑥𝑣 ∧ ⊥)))
2624, 25mtoi 199 . . . . 5 ((𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → ¬ 𝑥𝑦)
2726bianfd 534 . . . 4 ((𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → (𝑥𝑦 ↔ (𝑥𝑦𝜑)))
2827alimi 1812 . . 3 (∀𝑥(𝑥𝑦 ↔ (𝑥𝑣 ∧ ⊥)) → ∀𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑)))
2922, 28eximii 1838 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑦𝜑))
308, 9, 14, 20, 21, 29dvelimexcasei 35085 1 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wfal 1553  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-sep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-clel 2806  df-nfc 2881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator