Step | Hyp | Ref
| Expression |
1 | | nfv 1913 |
. . 3
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 |
2 | | nfvd 1914 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑥 ∈ 𝑤) |
3 | | nfcvf 2938 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝑧) |
4 | 3 | nfcrd 2902 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑥 ∈ 𝑧) |
5 | | nfvd 1914 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝜑) |
6 | 4, 5 | nfand 1896 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(𝑥 ∈ 𝑧 ∧ 𝜑)) |
7 | 2, 6 | nfbid 1901 |
. . 3
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(𝑥 ∈ 𝑤 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
8 | 1, 7 | nfald 2332 |
. 2
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦∀𝑥(𝑥 ∈ 𝑤 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
9 | | nfvd 1914 |
. 2
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑤∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
10 | | elequ2 2123 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦)) |
11 | 10 | bibi1d 343 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝑤 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
12 | 11 | biimpd 229 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝑤 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) → (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
13 | 12 | alimdv 1915 |
. . 3
⊢ (𝑤 = 𝑦 → (∀𝑥(𝑥 ∈ 𝑤 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) → ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
14 | 13 | a1i 11 |
. 2
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (𝑤 = 𝑦 → (∀𝑥(𝑥 ∈ 𝑤 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) → ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))))) |
15 | | elequ2 2123 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧)) |
16 | 15 | anbi1d 630 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑥 ∈ 𝑦 ∧ 𝜑) ↔ (𝑥 ∈ 𝑧 ∧ 𝜑))) |
17 | 16 | bibi2d 342 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
18 | 17 | biimpd 229 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) → (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
19 | 18 | alimdv 1915 |
. . 3
⊢ (𝑦 = 𝑧 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
20 | 19 | sps 2186 |
. 2
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)))) |
21 | | ax-sep 5317 |
. 2
⊢
∃𝑤∀𝑥(𝑥 ∈ 𝑤 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
22 | | ax-nul 5324 |
. . 3
⊢
∃𝑦∀𝑥 ¬ 𝑥 ∈ 𝑦 |
23 | | id 22 |
. . . . 5
⊢ (¬
𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑦) |
24 | 23 | bianfd 534 |
. . . 4
⊢ (¬
𝑥 ∈ 𝑦 → (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑))) |
25 | 24 | alimi 1809 |
. . 3
⊢
(∀𝑥 ¬
𝑥 ∈ 𝑦 → ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑))) |
26 | 22, 25 | eximii 1835 |
. 2
⊢
∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) |
27 | 8, 9, 14, 20, 21, 26 | dvelimexcasei 35054 |
1
⊢
∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |