Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliind2 Structured version   Visualization version   GIF version

Theorem eliind2 45140
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
eliind2.1 𝑥𝜑
eliind2.2 (𝜑𝐴𝑉)
eliind2.3 ((𝜑𝑥𝐵) → 𝐴𝐶)
Assertion
Ref Expression
eliind2 (𝜑𝐴 𝑥𝐵 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem eliind2
StepHypRef Expression
1 eliind2.1 . . 3 𝑥𝜑
2 eliind2.3 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝐶)
32ex 412 . . 3 (𝜑 → (𝑥𝐵𝐴𝐶))
41, 3ralrimi 3256 . 2 (𝜑 → ∀𝑥𝐵 𝐴𝐶)
5 eliind2.2 . . 3 (𝜑𝐴𝑉)
6 eliin 4995 . . 3 (𝐴𝑉 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
75, 6syl 17 . 2 (𝜑 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
84, 7mpbird 257 1 (𝜑𝐴 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1782  wcel 2107  wral 3060   ciin 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-iin 4993
This theorem is referenced by:  fsupdm  46862  finfdm  46866
  Copyright terms: Public domain W3C validator