![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliind2 | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
eliind2.1 | ⊢ Ⅎ𝑥𝜑 |
eliind2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
eliind2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eliind2 | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliind2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eliind2.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | |
3 | 2 | ex 403 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
4 | 1, 3 | ralrimi 3165 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
5 | eliind2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | eliin 4744 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
8 | 4, 7 | mpbird 249 | 1 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 Ⅎwnf 1884 ∈ wcel 2166 ∀wral 3116 ∩ ciin 4740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-v 3415 df-iin 4742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |