Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliind2 | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
eliind2.1 | ⊢ Ⅎ𝑥𝜑 |
eliind2.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
eliind2.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Ref | Expression |
---|---|
eliind2 | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliind2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eliind2.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | |
3 | 2 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
4 | 1, 3 | ralrimi 3141 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
5 | eliind2.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | eliin 4929 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
8 | 4, 7 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-iin 4927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |