![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinssiin | Structured version Visualization version GIF version |
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iinssiin.1 | ⊢ Ⅎ𝑥𝜑 |
iinssiin.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
iinssiin | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinssiin.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
2 | nfii1 5035 | . . . . . 6 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
3 | 2 | nfcri 2893 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 |
4 | 1, 3 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) |
5 | iinssiin.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
6 | 5 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
7 | eliinid 44999 | . . . . . . 7 ⊢ ((𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) | |
8 | 7 | adantll 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
9 | 6, 8 | sseldd 3996 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐶) |
10 | 9 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐶)) |
11 | 4, 10 | ralrimi 3253 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
12 | eliin 5003 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
13 | 12 | elv 3482 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
14 | 11, 13 | sylibr 234 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
15 | 14 | ssd 44968 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1778 ∈ wcel 2104 ∀wral 3057 Vcvv 3477 ⊆ wss 3963 ∩ ciin 4999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1538 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ral 3058 df-v 3479 df-ss 3980 df-iin 5001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |