![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinssiin | Structured version Visualization version GIF version |
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iinssiin.1 | ⊢ Ⅎ𝑥𝜑 |
iinssiin.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
iinssiin | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinssiin.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcv 2969 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
3 | nfii1 4773 | . . . . . . 7 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
4 | 2, 3 | nfel 2982 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 |
5 | 1, 4 | nfan 2002 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) |
6 | iinssiin.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
7 | 6 | adantlr 706 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
8 | eliinid 40104 | . . . . . . . 8 ⊢ ((𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) | |
9 | 8 | adantll 705 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
10 | 7, 9 | sseldd 3828 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐶) |
11 | 10 | ex 403 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐶)) |
12 | 5, 11 | ralrimi 3166 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
13 | vex 3417 | . . . . 5 ⊢ 𝑦 ∈ V | |
14 | eliin 4747 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
16 | 12, 15 | sylibr 226 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
17 | 16 | ralrimiva 3175 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
18 | dfss3 3816 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) | |
19 | 17, 18 | sylibr 226 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 Ⅎwnf 1882 ∈ wcel 2164 ∀wral 3117 Vcvv 3414 ⊆ wss 3798 ∩ ciin 4743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-v 3416 df-in 3805 df-ss 3812 df-iin 4745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |