Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssiin Structured version   Visualization version   GIF version

Theorem iinssiin 42567
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinssiin.1 𝑥𝜑
iinssiin.2 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iinssiin (𝜑 𝑥𝐴 𝐵 𝑥𝐴 𝐶)

Proof of Theorem iinssiin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iinssiin.1 . . . . 5 𝑥𝜑
2 nfii1 4956 . . . . . 6 𝑥 𝑥𝐴 𝐵
32nfcri 2893 . . . . 5 𝑥 𝑦 𝑥𝐴 𝐵
41, 3nfan 1903 . . . 4 𝑥(𝜑𝑦 𝑥𝐴 𝐵)
5 iinssiin.2 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝐶)
65adantlr 711 . . . . . 6 (((𝜑𝑦 𝑥𝐴 𝐵) ∧ 𝑥𝐴) → 𝐵𝐶)
7 eliinid 42550 . . . . . . 7 ((𝑦 𝑥𝐴 𝐵𝑥𝐴) → 𝑦𝐵)
87adantll 710 . . . . . 6 (((𝜑𝑦 𝑥𝐴 𝐵) ∧ 𝑥𝐴) → 𝑦𝐵)
96, 8sseldd 3918 . . . . 5 (((𝜑𝑦 𝑥𝐴 𝐵) ∧ 𝑥𝐴) → 𝑦𝐶)
109ex 412 . . . 4 ((𝜑𝑦 𝑥𝐴 𝐵) → (𝑥𝐴𝑦𝐶))
114, 10ralrimi 3139 . . 3 ((𝜑𝑦 𝑥𝐴 𝐵) → ∀𝑥𝐴 𝑦𝐶)
12 eliin 4926 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
1312elv 3428 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
1411, 13sylibr 233 . 2 ((𝜑𝑦 𝑥𝐴 𝐵) → 𝑦 𝑥𝐴 𝐶)
1514ssd 42519 1 (𝜑 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1787  wcel 2108  wral 3063  Vcvv 3422  wss 3883   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900  df-iin 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator