Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinssiin | Structured version Visualization version GIF version |
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iinssiin.1 | ⊢ Ⅎ𝑥𝜑 |
iinssiin.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
iinssiin | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinssiin.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
2 | nfii1 4959 | . . . . . 6 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
3 | 2 | nfcri 2894 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 |
4 | 1, 3 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) |
5 | iinssiin.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
6 | 5 | adantlr 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
7 | eliinid 42661 | . . . . . . 7 ⊢ ((𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) | |
8 | 7 | adantll 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
9 | 6, 8 | sseldd 3922 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐶) |
10 | 9 | ex 413 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐶)) |
11 | 4, 10 | ralrimi 3141 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
12 | eliin 4929 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
13 | 12 | elv 3438 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
14 | 11, 13 | sylibr 233 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) |
15 | 14 | ssd 42630 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-iin 4927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |