| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | ralbidv 3155 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 3 | df-iin 4944 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 4 | 2, 3 | elab2g 3636 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ ciin 4942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-iin 4944 |
| This theorem is referenced by: iinconst 4952 iuniin 4954 iinssiun 4955 iinss1 4957 ssiinf 5003 iinss 5005 iinss2 5006 iinab 5016 iinun2 5021 iundif2 5022 iindif1 5023 iindif2 5025 iinin2 5026 elriin 5029 iinpw 5054 triin 5214 xpiindi 5775 cnviin 6233 iinpreima 7002 iiner 8713 ixpiin 8848 boxriin 8864 iunocv 21616 hauscmplem 23319 txtube 23553 isfcls 23922 iscmet3 25218 taylfval 26291 zarclsiin 33879 fnemeet1 36399 diaglbN 41093 dibglbN 41204 dihglbcpreN 41338 kelac1 43095 eliind 45107 eliuniin 45135 eliin2f 45140 eliinid 45147 eliuniin2 45156 iinssiin 45165 eliind2 45166 iinssf 45174 iindif2f 45196 allbutfi 45430 meaiininclem 46523 hspdifhsp 46653 iinhoiicclem 46710 preimageiingt 46757 preimaleiinlt 46758 smflimlem2 46809 smflimsuplem5 46861 smflimsuplem7 46863 iineq0 48850 iinxp 48861 iinfsubc 49089 |
| Copyright terms: Public domain | W3C validator |