| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | ralbidv 3163 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 3 | df-iin 4970 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 4 | 2, 3 | elab2g 3659 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ ciin 4968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-iin 4970 |
| This theorem is referenced by: iinconst 4978 iuniin 4980 iinssiun 4981 iinss1 4983 ssiinf 5030 iinss 5032 iinss2 5033 iinab 5044 iinun2 5049 iundif2 5050 iindif1 5051 iindif2 5053 iinin2 5054 elriin 5057 iinpw 5082 triin 5246 xpiindi 5815 cnviin 6275 iinpreima 7058 iiner 8801 ixpiin 8936 boxriin 8952 iunocv 21639 hauscmplem 23342 txtube 23576 isfcls 23945 iscmet3 25243 taylfval 26316 zarclsiin 33848 fnemeet1 36330 diaglbN 41020 dibglbN 41131 dihglbcpreN 41265 kelac1 43034 eliind 45043 eliuniin 45071 eliin2f 45076 eliinid 45083 eliuniin2 45092 iinssiin 45101 eliind2 45102 iinssf 45110 iindif2f 45132 allbutfi 45368 meaiininclem 46463 hspdifhsp 46593 iinhoiicclem 46650 preimageiingt 46697 preimaleiinlt 46698 smflimlem2 46749 smflimsuplem5 46801 smflimsuplem7 46803 iineq0 48746 iinxp 48757 iinfsubc 48973 |
| Copyright terms: Public domain | W3C validator |