Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | ralbidv 3112 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
3 | df-iin 4927 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
4 | 2, 3 | elab2g 3611 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-iin 4927 |
This theorem is referenced by: iinconst 4934 iuniin 4936 iinssiun 4937 iinss1 4939 ssiinf 4984 iinss 4986 iinss2 4987 iinab 4997 iinun2 5002 iundif2 5003 iindif1 5004 iindif2 5006 iinin2 5007 elriin 5010 iinpw 5035 triin 5206 xpiindi 5744 cnviin 6189 iinpreima 6946 iiner 8578 ixpiin 8712 boxriin 8728 iunocv 20886 hauscmplem 22557 txtube 22791 isfcls 23160 iscmet3 24457 taylfval 25518 zarclsiin 31821 fnemeet1 34555 diaglbN 39069 dibglbN 39180 dihglbcpreN 39314 kelac1 40888 eliind 42619 eliuniin 42649 eliin2f 42654 eliinid 42661 eliuniin2 42669 iinssiin 42678 eliind2 42679 iinssf 42687 allbutfi 42933 meaiininclem 44024 hspdifhsp 44154 iinhoiicclem 44211 preimageiingt 44257 preimaleiinlt 44258 smflimlem2 44307 smflimsuplem5 44357 smflimsuplem7 44359 |
Copyright terms: Public domain | W3C validator |