| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | ralbidv 3157 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 3 | df-iin 4961 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 4 | 2, 3 | elab2g 3650 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ ciin 4959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-iin 4961 |
| This theorem is referenced by: iinconst 4969 iuniin 4971 iinssiun 4972 iinss1 4974 ssiinf 5021 iinss 5023 iinss2 5024 iinab 5035 iinun2 5040 iundif2 5041 iindif1 5042 iindif2 5044 iinin2 5045 elriin 5048 iinpw 5073 triin 5234 xpiindi 5802 cnviin 6262 iinpreima 7044 iiner 8765 ixpiin 8900 boxriin 8916 iunocv 21597 hauscmplem 23300 txtube 23534 isfcls 23903 iscmet3 25200 taylfval 26273 zarclsiin 33868 fnemeet1 36361 diaglbN 41056 dibglbN 41167 dihglbcpreN 41301 kelac1 43059 eliind 45072 eliuniin 45100 eliin2f 45105 eliinid 45112 eliuniin2 45121 iinssiin 45130 eliind2 45131 iinssf 45139 iindif2f 45161 allbutfi 45396 meaiininclem 46491 hspdifhsp 46621 iinhoiicclem 46678 preimageiingt 46725 preimaleiinlt 46726 smflimlem2 46777 smflimsuplem5 46829 smflimsuplem7 46831 iineq0 48812 iinxp 48823 iinfsubc 49051 |
| Copyright terms: Public domain | W3C validator |