![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2820 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | ralbidv 3176 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
3 | df-iin 5000 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
4 | 2, 3 | elab2g 3670 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∩ ciin 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-iin 5000 |
This theorem is referenced by: iinconst 5007 iuniin 5009 iinssiun 5010 iinss1 5012 ssiinf 5057 iinss 5059 iinss2 5060 iinab 5071 iinun2 5076 iundif2 5077 iindif1 5078 iindif2 5080 iinin2 5081 elriin 5084 iinpw 5109 triin 5282 xpiindi 5835 cnviin 6285 iinpreima 7070 iiner 8789 ixpiin 8924 boxriin 8940 iunocv 21545 hauscmplem 23231 txtube 23465 isfcls 23834 iscmet3 25142 taylfval 26211 zarclsiin 33317 fnemeet1 35718 diaglbN 40393 dibglbN 40504 dihglbcpreN 40638 kelac1 42271 eliind 44223 eliuniin 44253 eliin2f 44258 eliinid 44265 eliuniin2 44274 iinssiin 44283 eliind2 44284 iinssf 44292 iindif2f 44319 allbutfi 44565 meaiininclem 45664 hspdifhsp 45794 iinhoiicclem 45851 preimageiingt 45898 preimaleiinlt 45899 smflimlem2 45950 smflimsuplem5 46002 smflimsuplem7 46004 |
Copyright terms: Public domain | W3C validator |