| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | ralbidv 3152 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 3 | df-iin 4947 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 4 | 2, 3 | elab2g 3638 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ ciin 4945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-iin 4947 |
| This theorem is referenced by: iinconst 4955 iuniin 4957 iinssiun 4958 iinss1 4960 ssiinf 5006 iinss 5008 iinss2 5009 iinab 5020 iinun2 5025 iundif2 5026 iindif1 5027 iindif2 5029 iinin2 5030 elriin 5033 iinpw 5058 triin 5218 xpiindi 5782 cnviin 6238 iinpreima 7007 iiner 8723 ixpiin 8858 boxriin 8874 iunocv 21606 hauscmplem 23309 txtube 23543 isfcls 23912 iscmet3 25209 taylfval 26282 zarclsiin 33837 fnemeet1 36339 diaglbN 41034 dibglbN 41145 dihglbcpreN 41279 kelac1 43036 eliind 45049 eliuniin 45077 eliin2f 45082 eliinid 45089 eliuniin2 45098 iinssiin 45107 eliind2 45108 iinssf 45116 iindif2f 45138 allbutfi 45373 meaiininclem 46468 hspdifhsp 46598 iinhoiicclem 46655 preimageiingt 46702 preimaleiinlt 46703 smflimlem2 46754 smflimsuplem5 46806 smflimsuplem7 46808 iineq0 48805 iinxp 48816 iinfsubc 49044 |
| Copyright terms: Public domain | W3C validator |