| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 3 | df-iin 4958 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 4 | 2, 3 | elab2g 3647 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ ciin 4956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-iin 4958 |
| This theorem is referenced by: iinconst 4966 iuniin 4968 iinssiun 4969 iinss1 4971 ssiinf 5018 iinss 5020 iinss2 5021 iinab 5032 iinun2 5037 iundif2 5038 iindif1 5039 iindif2 5041 iinin2 5042 elriin 5045 iinpw 5070 triin 5231 xpiindi 5799 cnviin 6259 iinpreima 7041 iiner 8762 ixpiin 8897 boxriin 8913 iunocv 21590 hauscmplem 23293 txtube 23527 isfcls 23896 iscmet3 25193 taylfval 26266 zarclsiin 33861 fnemeet1 36354 diaglbN 41049 dibglbN 41160 dihglbcpreN 41294 kelac1 43052 eliind 45065 eliuniin 45093 eliin2f 45098 eliinid 45105 eliuniin2 45114 iinssiin 45123 eliind2 45124 iinssf 45132 iindif2f 45154 allbutfi 45389 meaiininclem 46484 hspdifhsp 46614 iinhoiicclem 46671 preimageiingt 46718 preimaleiinlt 46719 smflimlem2 46770 smflimsuplem5 46822 smflimsuplem7 46824 iineq0 48808 iinxp 48819 iinfsubc 49047 |
| Copyright terms: Public domain | W3C validator |