Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
Ref | Expression |
---|---|
eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | 1 | ralbidv 3120 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
3 | df-iin 4924 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
4 | 2, 3 | elab2g 3604 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-iin 4924 |
This theorem is referenced by: iinconst 4931 iuniin 4933 iinssiun 4934 iinss1 4936 ssiinf 4980 iinss 4982 iinss2 4983 iinab 4993 iinun2 4998 iundif2 4999 iindif1 5000 iindif2 5002 iinin2 5003 elriin 5006 iinpw 5031 triin 5202 xpiindi 5733 cnviin 6178 iinpreima 6928 iiner 8536 ixpiin 8670 boxriin 8686 iunocv 20798 hauscmplem 22465 txtube 22699 isfcls 23068 iscmet3 24362 taylfval 25423 zarclsiin 31723 fnemeet1 34482 diaglbN 38996 dibglbN 39107 dihglbcpreN 39241 kelac1 40804 eliind 42508 eliuniin 42538 eliin2f 42543 eliinid 42550 eliuniin2 42558 iinssiin 42567 eliind2 42568 iinssf 42576 allbutfi 42823 meaiininclem 43914 hspdifhsp 44044 iinhoiicclem 44101 preimageiingt 44144 preimaleiinlt 44145 smflimlem2 44194 smflimsuplem5 44244 smflimsuplem7 44246 |
Copyright terms: Public domain | W3C validator |