| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliin | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliin | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | ralbidv 3156 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 3 | df-iin 4944 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
| 4 | 2, 3 | elab2g 3632 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∩ ciin 4942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-iin 4944 |
| This theorem is referenced by: iinconst 4952 iuniin 4954 iinssiun 4955 iinss1 4957 ssiinf 5005 iinss 5007 iinss2 5008 iinab 5018 iinun2 5023 iundif2 5024 iindif1 5025 iindif2 5027 iinin2 5028 elriin 5031 iinpw 5056 triin 5216 xpiindi 5779 cnviin 6238 iinpreima 7008 iiner 8719 ixpiin 8854 boxriin 8870 iunocv 21620 hauscmplem 23322 txtube 23556 isfcls 23925 iscmet3 25221 taylfval 26294 zarclsiin 33905 fnemeet1 36431 diaglbN 41174 dibglbN 41285 dihglbcpreN 41419 kelac1 43180 eliind 45192 eliuniin 45220 eliin2f 45225 eliinid 45232 eliuniin2 45241 iinssiin 45250 eliind2 45251 iinssf 45259 iindif2f 45281 allbutfi 45515 meaiininclem 46608 hspdifhsp 46738 iinhoiicclem 46795 preimageiingt 46842 preimaleiinlt 46843 smflimlem2 46894 smflimsuplem5 46946 smflimsuplem7 46948 iineq0 48944 iinxp 48955 iinfsubc 49183 |
| Copyright terms: Public domain | W3C validator |