MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinsn Structured version   Visualization version   GIF version

Theorem elinsn 4735
Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021.)
Assertion
Ref Expression
elinsn ((𝐴𝑉 ∧ (𝐵𝐶) = {𝐴}) → (𝐴𝐵𝐴𝐶))

Proof of Theorem elinsn
StepHypRef Expression
1 snidg 4682 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 eleq2 2833 . . 3 ((𝐵𝐶) = {𝐴} → (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ {𝐴}))
3 elin 3992 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
43biimpi 216 . . 3 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
52, 4biimtrrdi 254 . 2 ((𝐵𝐶) = {𝐴} → (𝐴 ∈ {𝐴} → (𝐴𝐵𝐴𝐶)))
61, 5mpan9 506 1 ((𝐴𝑉 ∧ (𝐵𝐶) = {𝐴}) → (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-sn 4649
This theorem is referenced by:  frgrncvvdeqlem3  30335  frgrncvvdeqlem6  30338
  Copyright terms: Public domain W3C validator