MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinsn Structured version   Visualization version   GIF version

Theorem elinsn 4640
Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021.)
Assertion
Ref Expression
elinsn ((𝐴𝑉 ∧ (𝐵𝐶) = {𝐴}) → (𝐴𝐵𝐴𝐶))

Proof of Theorem elinsn
StepHypRef Expression
1 snidg 4593 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 eleq2 2901 . . 3 ((𝐵𝐶) = {𝐴} → (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ {𝐴}))
3 elin 4169 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
43biimpi 218 . . 3 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
52, 4syl6bir 256 . 2 ((𝐵𝐶) = {𝐴} → (𝐴 ∈ {𝐴} → (𝐴𝐵𝐴𝐶)))
61, 5mpan9 509 1 ((𝐴𝑉 ∧ (𝐵𝐶) = {𝐴}) → (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cin 3935  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3497  df-in 3943  df-sn 4562
This theorem is referenced by:  frgrncvvdeqlem3  28074  frgrncvvdeqlem6  28077
  Copyright terms: Public domain W3C validator