| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elinsn | Structured version Visualization version GIF version | ||
| Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| elinsn | ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∩ 𝐶) = {𝐴}) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4640 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | eleq2 2822 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = {𝐴} → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ 𝐴 ∈ {𝐴})) | |
| 3 | elin 3947 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 4 | 3 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| 5 | 2, 4 | biimtrrdi 254 | . 2 ⊢ ((𝐵 ∩ 𝐶) = {𝐴} → (𝐴 ∈ {𝐴} → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 6 | 1, 5 | mpan9 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∩ 𝐶) = {𝐴}) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-sn 4607 |
| This theorem is referenced by: frgrncvvdeqlem3 30248 frgrncvvdeqlem6 30251 |
| Copyright terms: Public domain | W3C validator |