Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elinsn | Structured version Visualization version GIF version |
Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021.) |
Ref | Expression |
---|---|
elinsn | ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∩ 𝐶) = {𝐴}) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4600 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | eleq2 2828 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = {𝐴} → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ 𝐴 ∈ {𝐴})) | |
3 | elin 3907 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 3 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
5 | 2, 4 | syl6bir 253 | . 2 ⊢ ((𝐵 ∩ 𝐶) = {𝐴} → (𝐴 ∈ {𝐴} → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
6 | 1, 5 | mpan9 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∩ 𝐶) = {𝐴}) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-sn 4567 |
This theorem is referenced by: frgrncvvdeqlem3 28644 frgrncvvdeqlem6 28647 |
Copyright terms: Public domain | W3C validator |