![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elinsn | Structured version Visualization version GIF version |
Description: If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021.) |
Ref | Expression |
---|---|
elinsn | ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∩ 𝐶) = {𝐴}) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 4682 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | eleq2 2833 | . . 3 ⊢ ((𝐵 ∩ 𝐶) = {𝐴} → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ 𝐴 ∈ {𝐴})) | |
3 | elin 3992 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 3 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
5 | 2, 4 | biimtrrdi 254 | . 2 ⊢ ((𝐵 ∩ 𝐶) = {𝐴} → (𝐴 ∈ {𝐴} → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
6 | 1, 5 | mpan9 506 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∩ 𝐶) = {𝐴}) → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-sn 4649 |
This theorem is referenced by: frgrncvvdeqlem3 30335 frgrncvvdeqlem6 30338 |
Copyright terms: Public domain | W3C validator |