MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem3 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem3 29245
Description: Lemma 3 for frgrncvvdeq 29253. The unique neighbor of a vertex (expressed by a restricted iota) is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem3 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦   𝑦,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
21ineq2i 4169 . 2 ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌))
3 frgrncvvdeq.f . . . . 5 (𝜑𝐺 ∈ FriendGraph )
43adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ FriendGraph )
5 frgrncvvdeq.nx . . . . . . . 8 𝐷 = (𝐺 NeighbVtx 𝑋)
65eleq2i 2829 . . . . . . 7 (𝑥𝐷𝑥 ∈ (𝐺 NeighbVtx 𝑋))
7 frgrncvvdeq.v1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
87nbgrisvtx 28289 . . . . . . . 8 (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉)
98a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉))
106, 9biimtrid 241 . . . . . 6 (𝜑 → (𝑥𝐷𝑥𝑉))
1110imp 407 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝑉)
12 frgrncvvdeq.y . . . . . 6 (𝜑𝑌𝑉)
1312adantr 481 . . . . 5 ((𝜑𝑥𝐷) → 𝑌𝑉)
14 frgrncvvdeq.xy . . . . . . 7 (𝜑𝑌𝐷)
15 elnelne2 3060 . . . . . . 7 ((𝑥𝐷𝑌𝐷) → 𝑥𝑌)
1614, 15sylan2 593 . . . . . 6 ((𝑥𝐷𝜑) → 𝑥𝑌)
1716ancoms 459 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝑌)
1811, 13, 173jca 1128 . . . 4 ((𝜑𝑥𝐷) → (𝑥𝑉𝑌𝑉𝑥𝑌))
19 frgrncvvdeq.e . . . . 5 𝐸 = (Edg‘𝐺)
207, 19frcond3 29213 . . . 4 (𝐺 ∈ FriendGraph → ((𝑥𝑉𝑌𝑉𝑥𝑌) → ∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}))
214, 18, 20sylc 65 . . 3 ((𝜑𝑥𝐷) → ∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛})
22 vex 3449 . . . . . . . . . 10 𝑛 ∈ V
23 elinsn 4671 . . . . . . . . . 10 ((𝑛 ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)))
2422, 23mpan 688 . . . . . . . . 9 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)))
25 frgrusgr 29205 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2619nbusgreledg 28301 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑛, 𝑥} ∈ 𝐸))
27 prcom 4693 . . . . . . . . . . . . . . . . . 18 {𝑛, 𝑥} = {𝑥, 𝑛}
2827eleq1i 2828 . . . . . . . . . . . . . . . . 17 ({𝑛, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸)
2926, 28bitrdi 286 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, 𝑛} ∈ 𝐸))
3029biimpd 228 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
313, 25, 303syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
3231adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
3332com12 32 . . . . . . . . . . . 12 (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑𝑥𝐷) → {𝑥, 𝑛} ∈ 𝐸))
3433adantr 481 . . . . . . . . . . 11 ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → ((𝜑𝑥𝐷) → {𝑥, 𝑛} ∈ 𝐸))
3534imp 407 . . . . . . . . . 10 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → {𝑥, 𝑛} ∈ 𝐸)
361eqcomi 2745 . . . . . . . . . . . . . 14 (𝐺 NeighbVtx 𝑌) = 𝑁
3736eleq2i 2829 . . . . . . . . . . . . 13 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑛𝑁)
3837biimpi 215 . . . . . . . . . . . 12 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑁)
3938adantl 482 . . . . . . . . . . 11 ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → 𝑛𝑁)
40 frgrncvvdeq.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
41 frgrncvvdeq.ne . . . . . . . . . . . 12 (𝜑𝑋𝑌)
42 frgrncvvdeq.a . . . . . . . . . . . 12 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
437, 19, 5, 1, 40, 12, 41, 14, 3, 42frgrncvvdeqlem2 29244 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
44 preq2 4695 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → {𝑥, 𝑦} = {𝑥, 𝑛})
4544eleq1d 2822 . . . . . . . . . . . 12 (𝑦 = 𝑛 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸))
4645riota2 7339 . . . . . . . . . . 11 ((𝑛𝑁 ∧ ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛))
4739, 43, 46syl2an 596 . . . . . . . . . 10 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛))
4835, 47mpbid 231 . . . . . . . . 9 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)
4924, 48sylan 580 . . . . . . . 8 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)
5049eqcomd 2742 . . . . . . 7 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → 𝑛 = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
5150sneqd 4598 . . . . . 6 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
52 eqeq1 2740 . . . . . . 7 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5352adantr 481 . . . . . 6 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5451, 53mpbird 256 . . . . 5 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
5554ex 413 . . . 4 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5655rexlimivw 3148 . . 3 (∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5721, 56mpcom 38 . 2 ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
582, 57eqtr2id 2789 1 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wnel 3049  wrex 3073  ∃!wreu 3351  Vcvv 3445  cin 3909  {csn 4586  {cpr 4588  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  Vtxcvtx 27947  Edgcedg 27998  USGraphcusgr 28100   NeighbVtx cnbgr 28280   FriendGraph cfrgr 29202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231  df-edg 27999  df-upgr 28033  df-umgr 28034  df-usgr 28102  df-nbgr 28281  df-frgr 29203
This theorem is referenced by:  frgrncvvdeqlem5  29247
  Copyright terms: Public domain W3C validator