MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem3 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem3 27851
Description: Lemma 3 for frgrncvvdeq 27859. The unique neighbor of a vertex (expressed by a restricted iota) is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem3 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦   𝑦,𝐸   𝑦,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
21ineq2i 4068 . 2 ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌))
3 frgrncvvdeq.f . . . . 5 (𝜑𝐺 ∈ FriendGraph )
43adantr 473 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ FriendGraph )
5 frgrncvvdeq.nx . . . . . . . 8 𝐷 = (𝐺 NeighbVtx 𝑋)
65eleq2i 2852 . . . . . . 7 (𝑥𝐷𝑥 ∈ (𝐺 NeighbVtx 𝑋))
7 frgrncvvdeq.v1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
87nbgrisvtx 26842 . . . . . . . 8 (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉)
98a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉))
106, 9syl5bi 234 . . . . . 6 (𝜑 → (𝑥𝐷𝑥𝑉))
1110imp 398 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝑉)
12 frgrncvvdeq.y . . . . . 6 (𝜑𝑌𝑉)
1312adantr 473 . . . . 5 ((𝜑𝑥𝐷) → 𝑌𝑉)
14 frgrncvvdeq.xy . . . . . . 7 (𝜑𝑌𝐷)
15 elnelne2 3079 . . . . . . 7 ((𝑥𝐷𝑌𝐷) → 𝑥𝑌)
1614, 15sylan2 584 . . . . . 6 ((𝑥𝐷𝜑) → 𝑥𝑌)
1716ancoms 451 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝑌)
1811, 13, 173jca 1109 . . . 4 ((𝜑𝑥𝐷) → (𝑥𝑉𝑌𝑉𝑥𝑌))
19 frgrncvvdeq.e . . . . 5 𝐸 = (Edg‘𝐺)
207, 19frcond3 27819 . . . 4 (𝐺 ∈ FriendGraph → ((𝑥𝑉𝑌𝑉𝑥𝑌) → ∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}))
214, 18, 20sylc 65 . . 3 ((𝜑𝑥𝐷) → ∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛})
22 vex 3413 . . . . . . . . . 10 𝑛 ∈ V
23 elinsn 4517 . . . . . . . . . 10 ((𝑛 ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)))
2422, 23mpan 678 . . . . . . . . 9 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)))
25 frgrusgr 27810 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2619nbusgreledg 26854 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑛, 𝑥} ∈ 𝐸))
27 prcom 4539 . . . . . . . . . . . . . . . . . 18 {𝑛, 𝑥} = {𝑥, 𝑛}
2827eleq1i 2851 . . . . . . . . . . . . . . . . 17 ({𝑛, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸)
2926, 28syl6bb 279 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, 𝑛} ∈ 𝐸))
3029biimpd 221 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
313, 25, 303syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
3231adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
3332com12 32 . . . . . . . . . . . 12 (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑𝑥𝐷) → {𝑥, 𝑛} ∈ 𝐸))
3433adantr 473 . . . . . . . . . . 11 ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → ((𝜑𝑥𝐷) → {𝑥, 𝑛} ∈ 𝐸))
3534imp 398 . . . . . . . . . 10 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → {𝑥, 𝑛} ∈ 𝐸)
361eqcomi 2782 . . . . . . . . . . . . . 14 (𝐺 NeighbVtx 𝑌) = 𝑁
3736eleq2i 2852 . . . . . . . . . . . . 13 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑛𝑁)
3837biimpi 208 . . . . . . . . . . . 12 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑁)
3938adantl 474 . . . . . . . . . . 11 ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → 𝑛𝑁)
40 frgrncvvdeq.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
41 frgrncvvdeq.ne . . . . . . . . . . . 12 (𝜑𝑋𝑌)
42 frgrncvvdeq.a . . . . . . . . . . . 12 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
437, 19, 5, 1, 40, 12, 41, 14, 3, 42frgrncvvdeqlem2 27850 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
44 preq2 4541 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → {𝑥, 𝑦} = {𝑥, 𝑛})
4544eleq1d 2845 . . . . . . . . . . . 12 (𝑦 = 𝑛 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸))
4645riota2 6958 . . . . . . . . . . 11 ((𝑛𝑁 ∧ ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛))
4739, 43, 46syl2an 587 . . . . . . . . . 10 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛))
4835, 47mpbid 224 . . . . . . . . 9 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)
4924, 48sylan 572 . . . . . . . 8 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)
5049eqcomd 2779 . . . . . . 7 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → 𝑛 = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
5150sneqd 4448 . . . . . 6 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
52 eqeq1 2777 . . . . . . 7 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5352adantr 473 . . . . . 6 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5451, 53mpbird 249 . . . . 5 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
5554ex 405 . . . 4 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5655rexlimivw 3222 . . 3 (∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5721, 56mpcom 38 . 2 ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
582, 57syl5req 2822 1 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2962  wnel 3068  wrex 3084  ∃!wreu 3085  Vcvv 3410  cin 3823  {csn 4436  {cpr 4438  cmpt 5005  cfv 6186  crio 6935  (class class class)co 6975  Vtxcvtx 26500  Edgcedg 26551  USGraphcusgr 26653   NeighbVtx cnbgr 26833   FriendGraph cfrgr 27806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-dju 9123  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-n0 11707  df-xnn0 11779  df-z 11793  df-uz 12058  df-fz 12708  df-hash 13505  df-edg 26552  df-upgr 26586  df-umgr 26587  df-usgr 26655  df-nbgr 26834  df-frgr 27807
This theorem is referenced by:  frgrncvvdeqlem5  27853
  Copyright terms: Public domain W3C validator