MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem3 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem3 28566
Description: Lemma 3 for frgrncvvdeq 28574. The unique neighbor of a vertex (expressed by a restricted iota) is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem3 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦   𝑦,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑁(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
21ineq2i 4140 . 2 ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌))
3 frgrncvvdeq.f . . . . 5 (𝜑𝐺 ∈ FriendGraph )
43adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝐺 ∈ FriendGraph )
5 frgrncvvdeq.nx . . . . . . . 8 𝐷 = (𝐺 NeighbVtx 𝑋)
65eleq2i 2830 . . . . . . 7 (𝑥𝐷𝑥 ∈ (𝐺 NeighbVtx 𝑋))
7 frgrncvvdeq.v1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
87nbgrisvtx 27611 . . . . . . . 8 (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉)
98a1i 11 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉))
106, 9syl5bi 241 . . . . . 6 (𝜑 → (𝑥𝐷𝑥𝑉))
1110imp 406 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝑉)
12 frgrncvvdeq.y . . . . . 6 (𝜑𝑌𝑉)
1312adantr 480 . . . . 5 ((𝜑𝑥𝐷) → 𝑌𝑉)
14 frgrncvvdeq.xy . . . . . . 7 (𝜑𝑌𝐷)
15 elnelne2 3059 . . . . . . 7 ((𝑥𝐷𝑌𝐷) → 𝑥𝑌)
1614, 15sylan2 592 . . . . . 6 ((𝑥𝐷𝜑) → 𝑥𝑌)
1716ancoms 458 . . . . 5 ((𝜑𝑥𝐷) → 𝑥𝑌)
1811, 13, 173jca 1126 . . . 4 ((𝜑𝑥𝐷) → (𝑥𝑉𝑌𝑉𝑥𝑌))
19 frgrncvvdeq.e . . . . 5 𝐸 = (Edg‘𝐺)
207, 19frcond3 28534 . . . 4 (𝐺 ∈ FriendGraph → ((𝑥𝑉𝑌𝑉𝑥𝑌) → ∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}))
214, 18, 20sylc 65 . . 3 ((𝜑𝑥𝐷) → ∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛})
22 vex 3426 . . . . . . . . . 10 𝑛 ∈ V
23 elinsn 4643 . . . . . . . . . 10 ((𝑛 ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛}) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)))
2422, 23mpan 686 . . . . . . . . 9 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)))
25 frgrusgr 28526 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2619nbusgreledg 27623 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑛, 𝑥} ∈ 𝐸))
27 prcom 4665 . . . . . . . . . . . . . . . . . 18 {𝑛, 𝑥} = {𝑥, 𝑛}
2827eleq1i 2829 . . . . . . . . . . . . . . . . 17 ({𝑛, 𝑥} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸)
2926, 28bitrdi 286 . . . . . . . . . . . . . . . 16 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, 𝑛} ∈ 𝐸))
3029biimpd 228 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
313, 25, 303syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
3231adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥𝐷) → (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, 𝑛} ∈ 𝐸))
3332com12 32 . . . . . . . . . . . 12 (𝑛 ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑𝑥𝐷) → {𝑥, 𝑛} ∈ 𝐸))
3433adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → ((𝜑𝑥𝐷) → {𝑥, 𝑛} ∈ 𝐸))
3534imp 406 . . . . . . . . . 10 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → {𝑥, 𝑛} ∈ 𝐸)
361eqcomi 2747 . . . . . . . . . . . . . 14 (𝐺 NeighbVtx 𝑌) = 𝑁
3736eleq2i 2830 . . . . . . . . . . . . 13 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑛𝑁)
3837biimpi 215 . . . . . . . . . . . 12 (𝑛 ∈ (𝐺 NeighbVtx 𝑌) → 𝑛𝑁)
3938adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) → 𝑛𝑁)
40 frgrncvvdeq.x . . . . . . . . . . . 12 (𝜑𝑋𝑉)
41 frgrncvvdeq.ne . . . . . . . . . . . 12 (𝜑𝑋𝑌)
42 frgrncvvdeq.a . . . . . . . . . . . 12 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
437, 19, 5, 1, 40, 12, 41, 14, 3, 42frgrncvvdeqlem2 28565 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
44 preq2 4667 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → {𝑥, 𝑦} = {𝑥, 𝑛})
4544eleq1d 2823 . . . . . . . . . . . 12 (𝑦 = 𝑛 → ({𝑥, 𝑦} ∈ 𝐸 ↔ {𝑥, 𝑛} ∈ 𝐸))
4645riota2 7238 . . . . . . . . . . 11 ((𝑛𝑁 ∧ ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛))
4739, 43, 46syl2an 595 . . . . . . . . . 10 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → ({𝑥, 𝑛} ∈ 𝐸 ↔ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛))
4835, 47mpbid 231 . . . . . . . . 9 (((𝑛 ∈ (𝐺 NeighbVtx 𝑥) ∧ 𝑛 ∈ (𝐺 NeighbVtx 𝑌)) ∧ (𝜑𝑥𝐷)) → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)
4924, 48sylan 579 . . . . . . . 8 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸) = 𝑛)
5049eqcomd 2744 . . . . . . 7 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → 𝑛 = (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
5150sneqd 4570 . . . . . 6 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
52 eqeq1 2742 . . . . . . 7 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5352adantr 480 . . . . . 6 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} ↔ {𝑛} = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5451, 53mpbird 256 . . . . 5 ((((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} ∧ (𝜑𝑥𝐷)) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
5554ex 412 . . . 4 (((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5655rexlimivw 3210 . . 3 (∃𝑛𝑉 ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {𝑛} → ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)}))
5721, 56mpcom 38 . 2 ((𝜑𝑥𝐷) → ((𝐺 NeighbVtx 𝑥) ∩ (𝐺 NeighbVtx 𝑌)) = {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)})
582, 57eqtr2id 2792 1 ((𝜑𝑥𝐷) → {(𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wrex 3064  ∃!wreu 3065  Vcvv 3422  cin 3882  {csn 4558  {cpr 4560  cmpt 5153  cfv 6418  crio 7211  (class class class)co 7255  Vtxcvtx 27269  Edgcedg 27320  USGraphcusgr 27422   NeighbVtx cnbgr 27602   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-upgr 27355  df-umgr 27356  df-usgr 27424  df-nbgr 27603  df-frgr 28524
This theorem is referenced by:  frgrncvvdeqlem5  28568
  Copyright terms: Public domain W3C validator