MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprg Structured version   Visualization version   GIF version

Theorem csbprg 4676
Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018.)
Assertion
Ref Expression
csbprg (𝐶𝑉𝐶 / 𝑥{𝐴, 𝐵} = {𝐶 / 𝑥𝐴, 𝐶 / 𝑥𝐵})

Proof of Theorem csbprg
StepHypRef Expression
1 csbun 4407 . . 3 𝐶 / 𝑥({𝐴} ∪ {𝐵}) = (𝐶 / 𝑥{𝐴} ∪ 𝐶 / 𝑥{𝐵})
2 csbsng 4675 . . . 4 (𝐶𝑉𝐶 / 𝑥{𝐴} = {𝐶 / 𝑥𝐴})
3 csbsng 4675 . . . 4 (𝐶𝑉𝐶 / 𝑥{𝐵} = {𝐶 / 𝑥𝐵})
42, 3uneq12d 4135 . . 3 (𝐶𝑉 → (𝐶 / 𝑥{𝐴} ∪ 𝐶 / 𝑥{𝐵}) = ({𝐶 / 𝑥𝐴} ∪ {𝐶 / 𝑥𝐵}))
51, 4eqtrid 2777 . 2 (𝐶𝑉𝐶 / 𝑥({𝐴} ∪ {𝐵}) = ({𝐶 / 𝑥𝐴} ∪ {𝐶 / 𝑥𝐵}))
6 df-pr 4595 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
76csbeq2i 3873 . 2 𝐶 / 𝑥{𝐴, 𝐵} = 𝐶 / 𝑥({𝐴} ∪ {𝐵})
8 df-pr 4595 . 2 {𝐶 / 𝑥𝐴, 𝐶 / 𝑥𝐵} = ({𝐶 / 𝑥𝐴} ∪ {𝐶 / 𝑥𝐵})
95, 7, 83eqtr4g 2790 1 (𝐶𝑉𝐶 / 𝑥{𝐴, 𝐵} = {𝐶 / 𝑥𝐴, 𝐶 / 𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3865  cun 3915  {csn 4592  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-pr 4595
This theorem is referenced by:  csbopg  4858
  Copyright terms: Public domain W3C validator