![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbprg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
Ref | Expression |
---|---|
csbprg | ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbun 4447 | . . 3 ⊢ ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) = (⦋𝐶 / 𝑥⦌{𝐴} ∪ ⦋𝐶 / 𝑥⦌{𝐵}) | |
2 | csbsng 4713 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴} = {⦋𝐶 / 𝑥⦌𝐴}) | |
3 | csbsng 4713 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐵} = {⦋𝐶 / 𝑥⦌𝐵}) | |
4 | 2, 3 | uneq12d 4179 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (⦋𝐶 / 𝑥⦌{𝐴} ∪ ⦋𝐶 / 𝑥⦌{𝐵}) = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵})) |
5 | 1, 4 | eqtrid 2787 | . 2 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵})) |
6 | df-pr 4634 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
7 | 6 | csbeq2i 3916 | . 2 ⊢ ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) |
8 | df-pr 4634 | . 2 ⊢ {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵} = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵}) | |
9 | 5, 7, 8 | 3eqtr4g 2800 | 1 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⦋csb 3908 ∪ cun 3961 {csn 4631 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-pr 4634 |
This theorem is referenced by: csbopg 4896 |
Copyright terms: Public domain | W3C validator |