| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbprg | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
| Ref | Expression |
|---|---|
| csbprg | ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbun 4416 | . . 3 ⊢ ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) = (⦋𝐶 / 𝑥⦌{𝐴} ∪ ⦋𝐶 / 𝑥⦌{𝐵}) | |
| 2 | csbsng 4684 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴} = {⦋𝐶 / 𝑥⦌𝐴}) | |
| 3 | csbsng 4684 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐵} = {⦋𝐶 / 𝑥⦌𝐵}) | |
| 4 | 2, 3 | uneq12d 4144 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (⦋𝐶 / 𝑥⦌{𝐴} ∪ ⦋𝐶 / 𝑥⦌{𝐵}) = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵})) |
| 5 | 1, 4 | eqtrid 2782 | . 2 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵})) |
| 6 | df-pr 4604 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 7 | 6 | csbeq2i 3882 | . 2 ⊢ ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) |
| 8 | df-pr 4604 | . 2 ⊢ {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵} = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵}) | |
| 9 | 5, 7, 8 | 3eqtr4g 2795 | 1 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⦋csb 3874 ∪ cun 3924 {csn 4601 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: csbopg 4867 |
| Copyright terms: Public domain | W3C validator |