| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbprg | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018.) |
| Ref | Expression |
|---|---|
| csbprg | ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbun 4392 | . . 3 ⊢ ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) = (⦋𝐶 / 𝑥⦌{𝐴} ∪ ⦋𝐶 / 𝑥⦌{𝐵}) | |
| 2 | csbsng 4662 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴} = {⦋𝐶 / 𝑥⦌𝐴}) | |
| 3 | csbsng 4662 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐵} = {⦋𝐶 / 𝑥⦌𝐵}) | |
| 4 | 2, 3 | uneq12d 4120 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (⦋𝐶 / 𝑥⦌{𝐴} ∪ ⦋𝐶 / 𝑥⦌{𝐵}) = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵})) |
| 5 | 1, 4 | eqtrid 2780 | . 2 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵})) |
| 6 | df-pr 4580 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 7 | 6 | csbeq2i 3855 | . 2 ⊢ ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = ⦋𝐶 / 𝑥⦌({𝐴} ∪ {𝐵}) |
| 8 | df-pr 4580 | . 2 ⊢ {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵} = ({⦋𝐶 / 𝑥⦌𝐴} ∪ {⦋𝐶 / 𝑥⦌𝐵}) | |
| 9 | 5, 7, 8 | 3eqtr4g 2793 | 1 ⊢ (𝐶 ∈ 𝑉 → ⦋𝐶 / 𝑥⦌{𝐴, 𝐵} = {⦋𝐶 / 𝑥⦌𝐴, ⦋𝐶 / 𝑥⦌𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⦋csb 3847 ∪ cun 3897 {csn 4577 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-nul 4285 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: csbopg 4844 |
| Copyright terms: Public domain | W3C validator |