MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem6 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem6 30333
Description: Lemma 6 for frgrncvvdeq 30338. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem6 ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸)
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem6
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem5 30332 . 2 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
12 fvex 6920 . . . . 5 (𝐴𝑥) ∈ V
13 elinsn 4715 . . . . 5 (((𝐴𝑥) ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴𝑥)}) → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴𝑥) ∈ 𝑁))
1412, 13mpan 690 . . . 4 (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴𝑥)} → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴𝑥) ∈ 𝑁))
15 frgrusgr 30290 . . . . . . . 8 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
162nbusgreledg 29385 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {(𝐴𝑥), 𝑥} ∈ 𝐸))
17 prcom 4737 . . . . . . . . . . 11 {(𝐴𝑥), 𝑥} = {𝑥, (𝐴𝑥)}
1817eleq1i 2830 . . . . . . . . . 10 ({(𝐴𝑥), 𝑥} ∈ 𝐸 ↔ {𝑥, (𝐴𝑥)} ∈ 𝐸)
1916, 18bitrdi 287 . . . . . . . . 9 (𝐺 ∈ USGraph → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, (𝐴𝑥)} ∈ 𝐸))
2019biimpd 229 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
219, 15, 203syl 18 . . . . . . 7 (𝜑 → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2221adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2322com12 32 . . . . 5 ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2423adantr 480 . . . 4 (((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴𝑥) ∈ 𝑁) → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2514, 24syl 17 . . 3 (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴𝑥)} → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2625eqcoms 2743 . 2 ({(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2711, 26mpcom 38 1 ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wnel 3044  Vcvv 3478  cin 3962  {csn 4631  {cpr 4633  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  Vtxcvtx 29028  Edgcedg 29079  USGraphcusgr 29181   NeighbVtx cnbgr 29364   FriendGraph cfrgr 30287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-upgr 29114  df-umgr 29115  df-usgr 29183  df-nbgr 29365  df-frgr 30288
This theorem is referenced by:  frgrncvvdeqlem8  30335
  Copyright terms: Public domain W3C validator