|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma 6 for frgrncvvdeq 30329. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) | 
| frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) | 
| frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | 
| frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | 
| frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) | 
| frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) | 
| frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | 
| frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | 
| Ref | Expression | 
|---|---|
| frgrncvvdeqlem6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frgrncvvdeq.v1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrncvvdeq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | frgrncvvdeq.nx | . . 3 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
| 4 | frgrncvvdeq.ny | . . 3 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
| 5 | frgrncvvdeq.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 6 | frgrncvvdeq.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | frgrncvvdeq.ne | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 8 | frgrncvvdeq.xy | . . 3 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
| 9 | frgrncvvdeq.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
| 10 | frgrncvvdeq.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 30323 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) | 
| 12 | fvex 6918 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
| 13 | elinsn 4709 | . . . . 5 ⊢ (((𝐴‘𝑥) ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)}) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
| 14 | 12, 13 | mpan 690 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | 
| 15 | frgrusgr 30281 | . . . . . . . 8 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 16 | 2 | nbusgreledg 29371 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {(𝐴‘𝑥), 𝑥} ∈ 𝐸)) | 
| 17 | prcom 4731 | . . . . . . . . . . 11 ⊢ {(𝐴‘𝑥), 𝑥} = {𝑥, (𝐴‘𝑥)} | |
| 18 | 17 | eleq1i 2831 | . . . . . . . . . 10 ⊢ ({(𝐴‘𝑥), 𝑥} ∈ 𝐸 ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸) | 
| 19 | 16, 18 | bitrdi 287 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 20 | 19 | biimpd 229 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 21 | 9, 15, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 23 | 22 | com12 32 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 25 | 14, 24 | syl 17 | . . 3 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 26 | 25 | eqcoms 2744 | . 2 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) | 
| 27 | 11, 26 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∉ wnel 3045 Vcvv 3479 ∩ cin 3949 {csn 4625 {cpr 4627 ↦ cmpt 5224 ‘cfv 6560 ℩crio 7388 (class class class)co 7432 Vtxcvtx 29014 Edgcedg 29065 USGraphcusgr 29167 NeighbVtx cnbgr 29350 FriendGraph cfrgr 30278 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-fz 13549 df-hash 14371 df-edg 29066 df-upgr 29100 df-umgr 29101 df-usgr 29169 df-nbgr 29351 df-frgr 30279 | 
| This theorem is referenced by: frgrncvvdeqlem8 30326 | 
| Copyright terms: Public domain | W3C validator |