| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma 6 for frgrncvvdeq 30238. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
| Ref | Expression |
|---|---|
| frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
| frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
| frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
| frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
| frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
| frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
| Ref | Expression |
|---|---|
| frgrncvvdeqlem6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrncvvdeq.v1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrncvvdeq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | frgrncvvdeq.nx | . . 3 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
| 4 | frgrncvvdeq.ny | . . 3 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
| 5 | frgrncvvdeq.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 6 | frgrncvvdeq.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 7 | frgrncvvdeq.ne | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 8 | frgrncvvdeq.xy | . . 3 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
| 9 | frgrncvvdeq.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
| 10 | frgrncvvdeq.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 30232 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
| 12 | fvex 6871 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
| 13 | elinsn 4674 | . . . . 5 ⊢ (((𝐴‘𝑥) ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)}) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
| 14 | 12, 13 | mpan 690 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) |
| 15 | frgrusgr 30190 | . . . . . . . 8 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 16 | 2 | nbusgreledg 29280 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {(𝐴‘𝑥), 𝑥} ∈ 𝐸)) |
| 17 | prcom 4696 | . . . . . . . . . . 11 ⊢ {(𝐴‘𝑥), 𝑥} = {𝑥, (𝐴‘𝑥)} | |
| 18 | 17 | eleq1i 2819 | . . . . . . . . . 10 ⊢ ({(𝐴‘𝑥), 𝑥} ∈ 𝐸 ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
| 19 | 16, 18 | bitrdi 287 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 20 | 19 | biimpd 229 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 21 | 9, 15, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 23 | 22 | com12 32 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 25 | 14, 24 | syl 17 | . . 3 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 26 | 25 | eqcoms 2737 | . 2 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
| 27 | 11, 26 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 Vcvv 3447 ∩ cin 3913 {csn 4589 {cpr 4591 ↦ cmpt 5188 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 Vtxcvtx 28923 Edgcedg 28974 USGraphcusgr 29076 NeighbVtx cnbgr 29259 FriendGraph cfrgr 30187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-edg 28975 df-upgr 29009 df-umgr 29010 df-usgr 29078 df-nbgr 29260 df-frgr 30188 |
| This theorem is referenced by: frgrncvvdeqlem8 30235 |
| Copyright terms: Public domain | W3C validator |