![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem6 | Structured version Visualization version GIF version |
Description: Lemma 6 for frgrncvvdeq 29151. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrncvvdeq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrncvvdeq.nx | . . 3 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | frgrncvvdeq.ny | . . 3 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
5 | frgrncvvdeq.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | frgrncvvdeq.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | frgrncvvdeq.ne | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | frgrncvvdeq.xy | . . 3 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
9 | frgrncvvdeq.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
10 | frgrncvvdeq.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 29145 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
12 | fvex 6853 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
13 | elinsn 4670 | . . . . 5 ⊢ (((𝐴‘𝑥) ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)}) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
14 | 12, 13 | mpan 688 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) |
15 | frgrusgr 29103 | . . . . . . . 8 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
16 | 2 | nbusgreledg 28199 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {(𝐴‘𝑥), 𝑥} ∈ 𝐸)) |
17 | prcom 4692 | . . . . . . . . . . 11 ⊢ {(𝐴‘𝑥), 𝑥} = {𝑥, (𝐴‘𝑥)} | |
18 | 17 | eleq1i 2828 | . . . . . . . . . 10 ⊢ ({(𝐴‘𝑥), 𝑥} ∈ 𝐸 ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
19 | 16, 18 | bitrdi 286 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
20 | 19 | biimpd 228 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
21 | 9, 15, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
22 | 21 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
23 | 22 | com12 32 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
24 | 23 | adantr 481 | . . . 4 ⊢ (((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
25 | 14, 24 | syl 17 | . . 3 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
26 | 25 | eqcoms 2744 | . 2 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
27 | 11, 26 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2942 ∉ wnel 3048 Vcvv 3444 ∩ cin 3908 {csn 4585 {cpr 4587 ↦ cmpt 5187 ‘cfv 6494 ℩crio 7309 (class class class)co 7354 Vtxcvtx 27845 Edgcedg 27896 USGraphcusgr 27998 NeighbVtx cnbgr 28178 FriendGraph cfrgr 29100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7669 ax-cnex 11104 ax-resscn 11105 ax-1cn 11106 ax-icn 11107 ax-addcl 11108 ax-addrcl 11109 ax-mulcl 11110 ax-mulrcl 11111 ax-mulcom 11112 ax-addass 11113 ax-mulass 11114 ax-distr 11115 ax-i2m1 11116 ax-1ne0 11117 ax-1rid 11118 ax-rnegex 11119 ax-rrecex 11120 ax-cnre 11121 ax-pre-lttri 11122 ax-pre-lttrn 11123 ax-pre-ltadd 11124 ax-pre-mulgt0 11125 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5530 df-eprel 5536 df-po 5544 df-so 5545 df-fr 5587 df-we 5589 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-pred 6252 df-ord 6319 df-on 6320 df-lim 6321 df-suc 6322 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7310 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7800 df-1st 7918 df-2nd 7919 df-frecs 8209 df-wrecs 8240 df-recs 8314 df-rdg 8353 df-1o 8409 df-2o 8410 df-oadd 8413 df-er 8645 df-en 8881 df-dom 8882 df-sdom 8883 df-fin 8884 df-dju 9834 df-card 9872 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11384 df-neg 11385 df-nn 12151 df-2 12213 df-n0 12411 df-xnn0 12483 df-z 12497 df-uz 12761 df-fz 13422 df-hash 14228 df-edg 27897 df-upgr 27931 df-umgr 27932 df-usgr 28000 df-nbgr 28179 df-frgr 29101 |
This theorem is referenced by: frgrncvvdeqlem8 29148 |
Copyright terms: Public domain | W3C validator |