MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem6 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem6 30324
Description: Lemma 6 for frgrncvvdeq 30329. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem6 ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸)
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem6
StepHypRef Expression
1 frgrncvvdeq.v1 . . 3 𝑉 = (Vtx‘𝐺)
2 frgrncvvdeq.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrncvvdeq.nx . . 3 𝐷 = (𝐺 NeighbVtx 𝑋)
4 frgrncvvdeq.ny . . 3 𝑁 = (𝐺 NeighbVtx 𝑌)
5 frgrncvvdeq.x . . 3 (𝜑𝑋𝑉)
6 frgrncvvdeq.y . . 3 (𝜑𝑌𝑉)
7 frgrncvvdeq.ne . . 3 (𝜑𝑋𝑌)
8 frgrncvvdeq.xy . . 3 (𝜑𝑌𝐷)
9 frgrncvvdeq.f . . 3 (𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a . . 3 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10frgrncvvdeqlem5 30323 . 2 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁))
12 fvex 6918 . . . . 5 (𝐴𝑥) ∈ V
13 elinsn 4709 . . . . 5 (((𝐴𝑥) ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴𝑥)}) → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴𝑥) ∈ 𝑁))
1412, 13mpan 690 . . . 4 (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴𝑥)} → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴𝑥) ∈ 𝑁))
15 frgrusgr 30281 . . . . . . . 8 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
162nbusgreledg 29371 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {(𝐴𝑥), 𝑥} ∈ 𝐸))
17 prcom 4731 . . . . . . . . . . 11 {(𝐴𝑥), 𝑥} = {𝑥, (𝐴𝑥)}
1817eleq1i 2831 . . . . . . . . . 10 ({(𝐴𝑥), 𝑥} ∈ 𝐸 ↔ {𝑥, (𝐴𝑥)} ∈ 𝐸)
1916, 18bitrdi 287 . . . . . . . . 9 (𝐺 ∈ USGraph → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, (𝐴𝑥)} ∈ 𝐸))
2019biimpd 229 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
219, 15, 203syl 18 . . . . . . 7 (𝜑 → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2221adantr 480 . . . . . 6 ((𝜑𝑥𝐷) → ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2322com12 32 . . . . 5 ((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2423adantr 480 . . . 4 (((𝐴𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴𝑥) ∈ 𝑁) → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2514, 24syl 17 . . 3 (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴𝑥)} → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2625eqcoms 2744 . 2 ({(𝐴𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸))
2711, 26mpcom 38 1 ((𝜑𝑥𝐷) → {𝑥, (𝐴𝑥)} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wnel 3045  Vcvv 3479  cin 3949  {csn 4625  {cpr 4627  cmpt 5224  cfv 6560  crio 7388  (class class class)co 7432  Vtxcvtx 29014  Edgcedg 29065  USGraphcusgr 29167   NeighbVtx cnbgr 29350   FriendGraph cfrgr 30278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-hash 14371  df-edg 29066  df-upgr 29100  df-umgr 29101  df-usgr 29169  df-nbgr 29351  df-frgr 30279
This theorem is referenced by:  frgrncvvdeqlem8  30326
  Copyright terms: Public domain W3C validator