![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem6 | Structured version Visualization version GIF version |
Description: Lemma 6 for frgrncvvdeq 30175. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 30-Dec-2021.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrncvvdeq.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrncvvdeq.nx | . . 3 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | frgrncvvdeq.ny | . . 3 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
5 | frgrncvvdeq.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | frgrncvvdeq.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | frgrncvvdeq.ne | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | frgrncvvdeq.xy | . . 3 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
9 | frgrncvvdeq.f | . . 3 ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) | |
10 | frgrncvvdeq.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | frgrncvvdeqlem5 30169 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁)) |
12 | fvex 6907 | . . . . 5 ⊢ (𝐴‘𝑥) ∈ V | |
13 | elinsn 4715 | . . . . 5 ⊢ (((𝐴‘𝑥) ∈ V ∧ ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)}) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) | |
14 | 12, 13 | mpan 688 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁)) |
15 | frgrusgr 30127 | . . . . . . . 8 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
16 | 2 | nbusgreledg 29222 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {(𝐴‘𝑥), 𝑥} ∈ 𝐸)) |
17 | prcom 4737 | . . . . . . . . . . 11 ⊢ {(𝐴‘𝑥), 𝑥} = {𝑥, (𝐴‘𝑥)} | |
18 | 17 | eleq1i 2816 | . . . . . . . . . 10 ⊢ ({(𝐴‘𝑥), 𝑥} ∈ 𝐸 ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
19 | 16, 18 | bitrdi 286 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ↔ {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
20 | 19 | biimpd 228 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
21 | 9, 15, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
22 | 21 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
23 | 22 | com12 32 | . . . . 5 ⊢ ((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
24 | 23 | adantr 479 | . . . 4 ⊢ (((𝐴‘𝑥) ∈ (𝐺 NeighbVtx 𝑥) ∧ (𝐴‘𝑥) ∈ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
25 | 14, 24 | syl 17 | . . 3 ⊢ (((𝐺 NeighbVtx 𝑥) ∩ 𝑁) = {(𝐴‘𝑥)} → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
26 | 25 | eqcoms 2733 | . 2 ⊢ ({(𝐴‘𝑥)} = ((𝐺 NeighbVtx 𝑥) ∩ 𝑁) → ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸)) |
27 | 11, 26 | mpcom 38 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → {𝑥, (𝐴‘𝑥)} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∉ wnel 3036 Vcvv 3463 ∩ cin 3944 {csn 4629 {cpr 4631 ↦ cmpt 5231 ‘cfv 6547 ℩crio 7372 (class class class)co 7417 Vtxcvtx 28865 Edgcedg 28916 USGraphcusgr 29018 NeighbVtx cnbgr 29201 FriendGraph cfrgr 30124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-dju 9924 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13517 df-hash 14322 df-edg 28917 df-upgr 28951 df-umgr 28952 df-usgr 29020 df-nbgr 29202 df-frgr 30125 |
This theorem is referenced by: frgrncvvdeqlem8 30172 |
Copyright terms: Public domain | W3C validator |