Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdf Structured version   Visualization version   GIF version

Theorem ssdf 42514
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
ssdf.1 𝑥𝜑
ssdf.2 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssdf (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssdf
StepHypRef Expression
1 ssdf.1 . . 3 𝑥𝜑
2 ssdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐵)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
41, 3ralrimi 3139 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐵)
5 dfss3 3905 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
64, 5sylibr 233 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1787  wcel 2108  wral 3063  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  ssd  42519  smfaddlem2  44186  smfadd  44187  smfmullem4  44215  smfmul  44216  smflimsuplem4  44243
  Copyright terms: Public domain W3C validator