Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdf Structured version   Visualization version   GIF version

Theorem ssdf 45085
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
ssdf.1 𝑥𝜑
ssdf.2 ((𝜑𝑥𝐴) → 𝑥𝐵)
Assertion
Ref Expression
ssdf (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssdf
StepHypRef Expression
1 ssdf.1 . . 3 𝑥𝜑
2 ssdf.2 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐵)
32ex 412 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
41, 3ralrimi 3256 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐵)
5 dfss3 3971 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
64, 5sylibr 234 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1782  wcel 2107  wral 3060  wss 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-nf 1783  df-ral 3061  df-ss 3967
This theorem is referenced by:  ssd  45090  smfaddlem2  46784  smfadd  46785  smfmullem4  46814  smfmul  46815  smflimsuplem4  46843
  Copyright terms: Public domain W3C validator