Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elintg | Structured version Visualization version GIF version |
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) (Proof shortened by JJ, 26-Jul-2021.) |
Ref | Expression |
---|---|
elintg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2821 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
2 | 1 | ralbidv 3110 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
3 | dfint2 4839 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
4 | 2, 3 | elab2g 3576 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ∩ cint 4837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-int 4838 |
This theorem is referenced by: elinti 4846 elrint 4880 onmindif 6262 onmindif2 7549 mremre 16981 toponmre 21847 1stcfb 22199 uffixfr 22677 plycpn 25040 insiga 31678 dfon2lem8 33343 elintabg 40750 trintALTVD 42061 trintALT 42062 elintd 42185 intsaluni 43433 intsal 43434 |
Copyright terms: Public domain | W3C validator |