MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintg Structured version   Visualization version   GIF version

Theorem elintg 4954
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
elintg (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elintg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2829 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21ralbidv 3178 . 2 (𝑦 = 𝐴 → (∀𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥))
3 dfint2 4948 . 2 𝐵 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥}
42, 3elab2g 3680 1 (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3061   cint 4946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-int 4947
This theorem is referenced by:  elinti  4955  elintabg  4957  elrint  4989  onmindif  6476  onmindif2  7827  mremre  17647  toponmre  23101  1stcfb  23453  uffixfr  23931  plycpn  26331  insiga  34138  dfon2lem8  35791  trintALTVD  44900  trintALT  44901  elintd  45079  intsaluni  46344  intsal  46345
  Copyright terms: Public domain W3C validator