MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintg Structured version   Visualization version   GIF version

Theorem elintg 4948
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
elintg (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elintg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2813 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21ralbidv 3169 . 2 (𝑦 = 𝐴 → (∀𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥))
3 dfint2 4942 . 2 𝐵 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥}
42, 3elab2g 3662 1 (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wral 3053   cint 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-int 4941
This theorem is referenced by:  elinti  4949  elintabg  4951  elrint  4985  onmindif  6446  onmindif2  7788  mremre  17544  toponmre  22907  1stcfb  23259  uffixfr  23737  plycpn  26131  insiga  33590  dfon2lem8  35223  trintALTVD  44096  trintALT  44097  elintd  44217  intsaluni  45496  intsal  45497
  Copyright terms: Public domain W3C validator