MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintg Structured version   Visualization version   GIF version

Theorem elintg 4921
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) (Proof shortened by JJ, 26-Jul-2021.)
Assertion
Ref Expression
elintg (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elintg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21ralbidv 3157 . 2 (𝑦 = 𝐴 → (∀𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥))
3 dfint2 4915 . 2 𝐵 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝑥}
42, 3elab2g 3650 1 (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-int 4914
This theorem is referenced by:  elinti  4922  elintabg  4924  elrint  4956  onmindif  6429  onmindif2  7786  mremre  17572  toponmre  22987  1stcfb  23339  uffixfr  23817  plycpn  26204  insiga  34134  dfon2lem8  35785  trintALTVD  44876  trintALT  44877  elintd  45075  intsaluni  46334  intsal  46335
  Copyright terms: Public domain W3C validator