Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inn0 Structured version   Visualization version   GIF version

Theorem inn0 42512
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Assertion
Ref Expression
inn0 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem inn0
StepHypRef Expression
1 nfcv 2906 . 2 𝑥𝐴
2 nfcv 2906 . 2 𝑥𝐵
31, 2inn0f 42510 1 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  wne 2942  wrex 3064  cin 3882  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-nul 4254
This theorem is referenced by:  qinioo  42963
  Copyright terms: Public domain W3C validator