![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inn0 | Structured version Visualization version GIF version |
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
inn0 | ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2905 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | inn0f 4380 | 1 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∩ cin 3965 ∅c0 4342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-rex 3071 df-v 3483 df-dif 3969 df-in 3973 df-nul 4343 |
This theorem is referenced by: ufdprmidl 33581 qinioo 45517 |
Copyright terms: Public domain | W3C validator |