MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inn0 Structured version   Visualization version   GIF version

Theorem inn0 4319
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Assertion
Ref Expression
inn0 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem inn0
StepHypRef Expression
1 nfcv 2894 . 2 𝑥𝐴
2 nfcv 2894 . 2 𝑥𝐵
31, 2inn0f 4318 1 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wne 2928  wrex 3056  cin 3896  c0 4280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-rex 3057  df-v 3438  df-dif 3900  df-in 3904  df-nul 4281
This theorem is referenced by:  ufdprmidl  33506  sswfaxreg  45090  qinioo  45645
  Copyright terms: Public domain W3C validator