MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inn0 Structured version   Visualization version   GIF version

Theorem inn0 4337
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Assertion
Ref Expression
inn0 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem inn0
StepHypRef Expression
1 nfcv 2892 . 2 𝑥𝐴
2 nfcv 2892 . 2 𝑥𝐵
31, 2inn0f 4336 1 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wne 2926  wrex 3054  cin 3915  c0 4298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-rex 3055  df-v 3452  df-dif 3919  df-in 3923  df-nul 4299
This theorem is referenced by:  ufdprmidl  33518  sswfaxreg  44970  qinioo  45526
  Copyright terms: Public domain W3C validator