Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inn0 Structured version   Visualization version   GIF version

Theorem inn0 44275
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Assertion
Ref Expression
inn0 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem inn0
StepHypRef Expression
1 nfcv 2895 . 2 𝑥𝐴
2 nfcv 2895 . 2 𝑥𝐵
31, 2inn0f 44273 1 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  wne 2932  wrex 3062  cin 3940  c0 4315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-in 3948  df-nul 4316
This theorem is referenced by:  qinioo  44758
  Copyright terms: Public domain W3C validator