MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inn0 Structured version   Visualization version   GIF version

Theorem inn0 4395
Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Assertion
Ref Expression
inn0 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem inn0
StepHypRef Expression
1 nfcv 2908 . 2 𝑥𝐴
2 nfcv 2908 . 2 𝑥𝐵
31, 2inn0f 4394 1 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wne 2946  wrex 3076  cin 3975  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-rex 3077  df-v 3490  df-dif 3979  df-in 3983  df-nul 4353
This theorem is referenced by:  ufdprmidl  33536  qinioo  45455
  Copyright terms: Public domain W3C validator