| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inn0 | Structured version Visualization version GIF version | ||
| Description: A nonempty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| inn0 | ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | inn0f 4351 | 1 ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ∩ cin 3930 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-rex 3060 df-v 3465 df-dif 3934 df-in 3938 df-nul 4314 |
| This theorem is referenced by: ufdprmidl 33504 sswfaxreg 44961 qinioo 45505 |
| Copyright terms: Public domain | W3C validator |