MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabw Structured version   Visualization version   GIF version

Theorem elopabw 5471
Description: Membership in a class abstraction of ordered pairs. Weaker version of elopab 5472 with a sethood antecedent, avoiding ax-sep 5238, ax-nul 5248, and ax-pr 5374. Originally a subproof of elopab 5472. (Contributed by SN, 11-Dec-2024.)
Assertion
Ref Expression
elopabw (𝐴𝑉 → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elopabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2737 . . . 4 (𝑧 = 𝐴 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝑦⟩))
21anbi1d 631 . . 3 (𝑧 = 𝐴 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
322exbidv 1925 . 2 (𝑧 = 𝐴 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
4 df-opab 5158 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
53, 4elab2g 3633 1 (𝐴𝑉 → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  cop 4583  {copab 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-opab 5158
This theorem is referenced by:  elopab  5472  iunopab  5504  ssrel  5729  cnv0  6094
  Copyright terms: Public domain W3C validator