![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabw | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. Weaker version of elopab 5546 with a sethood antecedent, avoiding ax-sep 5317, ax-nul 5324, and ax-pr 5447. Originally a subproof of elopab 5546. (Contributed by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
elopabw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 𝑦〉)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
3 | 2 | 2exbidv 1923 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
4 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
5 | 3, 4 | elab2g 3696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 |
This theorem is referenced by: elopab 5546 iunopab 5578 ssrel 5806 |
Copyright terms: Public domain | W3C validator |