Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elopabw | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. Weaker version of elopab 5440 with a sethood antecedent, avoiding ax-sep 5223, ax-nul 5230, and ax-pr 5352. Originally a subproof of elopab 5440. (Contributed by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
elopabw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 𝑦〉)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
3 | 2 | 2exbidv 1927 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
4 | df-opab 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
5 | 3, 4 | elab2g 3611 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 〈cop 4567 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-opab 5137 |
This theorem is referenced by: elopab 5440 iunopab 5472 ssrel 5693 |
Copyright terms: Public domain | W3C validator |