![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopabw | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. Weaker version of elopab 5533 with a sethood antecedent, avoiding ax-sep 5303, ax-nul 5310, and ax-pr 5433. Originally a subproof of elopab 5533. (Contributed by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
elopabw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2732 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝑦⟩)) | |
2 | 1 | anbi1d 629 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
3 | 2 | 2exbidv 1919 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
4 | df-opab 5215 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
5 | 3, 4 | elab2g 3671 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⟨cop 4638 {copab 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-opab 5215 |
This theorem is referenced by: elopab 5533 iunopab 5565 ssrel 5788 |
Copyright terms: Public domain | W3C validator |