| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopabw | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction of ordered pairs. Weaker version of elopab 5465 with a sethood antecedent, avoiding ax-sep 5232, ax-nul 5242, and ax-pr 5368. Originally a subproof of elopab 5465. (Contributed by SN, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| elopabw | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2734 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 𝑦〉)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑧 = 𝐴 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
| 3 | 2 | 2exbidv 1925 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
| 4 | df-opab 5152 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 5 | 3, 4 | elab2g 3634 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 〈cop 4580 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5152 |
| This theorem is referenced by: elopab 5465 iunopab 5497 ssrel 5721 |
| Copyright terms: Public domain | W3C validator |