Step | Hyp | Ref
| Expression |
1 | | elopabw 5484 |
. . . . . 6
⊢ (𝑤 ∈ V → (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) |
2 | 1 | elv 3452 |
. . . . 5
⊢ (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
3 | 2 | rexbii 3098 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧 ∈ 𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
4 | | rexcom4 3272 |
. . . . 5
⊢
(∃𝑧 ∈
𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
5 | | rexcom4 3272 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
6 | | r19.42v 3188 |
. . . . . . . 8
⊢
(∃𝑧 ∈
𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
7 | 6 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑦∃𝑧 ∈ 𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
8 | 5, 7 | bitri 275 |
. . . . . 6
⊢
(∃𝑧 ∈
𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
9 | 8 | exbii 1851 |
. . . . 5
⊢
(∃𝑥∃𝑧 ∈ 𝐴 ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
10 | 4, 9 | bitri 275 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
11 | 3, 10 | bitri 275 |
. . 3
⊢
(∃𝑧 ∈
𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)) |
12 | 11 | abbii 2807 |
. 2
⊢ {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)} |
13 | | df-iun 4957 |
. 2
⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧 ∈ 𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} |
14 | | df-opab 5169 |
. 2
⊢
{⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧 ∈ 𝐴 𝜑)} |
15 | 12, 13, 14 | 3eqtr4i 2775 |
1
⊢ ∪ 𝑧 ∈ 𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐴 𝜑} |