MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunopab Structured version   Visualization version   GIF version

Theorem iunopab 5563
Description: Move indexed union inside an ordered-pair class abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.) Avoid ax-sep 5295, ax-nul 5305, ax-pr 5431. (Revised by SN, 11-Nov-2024.)
Assertion
Ref Expression
iunopab 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝑧   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem iunopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elopabw 5530 . . . . . 6 (𝑤 ∈ V → (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
21elv 3484 . . . . 5 (𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
32rexbii 3093 . . . 4 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 rexcom4 3287 . . . . 5 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 rexcom4 3287 . . . . . . 7 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
6 r19.42v 3190 . . . . . . . 8 (∃𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
76exbii 1847 . . . . . . 7 (∃𝑦𝑧𝐴 (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
85, 7bitri 275 . . . . . 6 (∃𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
98exbii 1847 . . . . 5 (∃𝑥𝑧𝐴𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
104, 9bitri 275 . . . 4 (∃𝑧𝐴𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
113, 10bitri 275 . . 3 (∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑))
1211abbii 2808 . 2 {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
13 df-iun 4992 . 2 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝐴 𝑤 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}}
14 df-opab 5205 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑧𝐴 𝜑)}
1512, 13, 143eqtr4i 2774 1 𝑧𝐴 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wrex 3069  Vcvv 3479  cop 4631   ciun 4990  {copab 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rex 3070  df-v 3481  df-iun 4992  df-opab 5205
This theorem is referenced by:  marypha2lem2  9477
  Copyright terms: Public domain W3C validator