| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| elopab | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | opex 5424 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 3 | eleq1 2816 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ↔ 〈𝑥, 𝑦〉 ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 6 | 5 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 7 | elopabw 5486 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 8 | 1, 6, 7 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 〈cop 4595 {copab 5169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 |
| This theorem is referenced by: rexopabb 5488 vopelopabsb 5489 opelopabsb 5490 opelopabt 5492 opelopabga 5493 opabn0 5513 iunopabOLD 5520 elopabrOLD 5523 0nelopab 5527 elxp 5661 elopaelxpOLD 5729 elopaba 5771 elcnv 5840 cnvopab 6110 dfmpt3 6652 fmptsng 7142 fmptsnd 7143 opabex3d 7944 opabex3rd 7945 opabex3 7946 fsplit 8096 rtrclreclem3 15026 isfunc 17826 griedg0ssusgr 29192 rgrusgrprc 29517 brab2d 32535 brabgaf 32536 qqhval2 33972 eulerpartlemgvv 34367 satfvsucsuc 35352 satf0op 35364 opelopabd 37129 opelopabb 37130 poimirlem26 37640 ecxrn 38373 dicelval3 41174 pellexlem5 42821 pellex 42823 opelopab4 44541 sprsymrelfvlem 47491 uspgrsprf 48134 uspgrsprf1 48135 brab2dd 48816 |
| Copyright terms: Public domain | W3C validator |