![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elopab | ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3491 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ V) | |
2 | opex 5463 | . . . . 5 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
3 | eleq1 2819 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ↔ ⟨𝑥, 𝑦⟩ ∈ V)) | |
4 | 2, 3 | mpbiri 257 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V) |
5 | 4 | adantr 479 | . . 3 ⊢ ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V) |
6 | 5 | exlimivv 1933 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V) |
7 | elopabw 5525 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) | |
8 | 1, 6, 7 | pm5.21nii 377 | 1 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 ⟨cop 4633 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 |
This theorem is referenced by: rexopabb 5527 vopelopabsb 5528 opelopabsb 5529 opelopabt 5531 opelopabga 5532 opabn0 5552 iunopabOLD 5559 elopabrOLD 5562 0nelopab 5566 0nelopabOLD 5567 elxp 5698 elopaelxpOLD 5765 elopaba 5807 elcnv 5875 dfmpt3 6683 fmptsng 7167 fmptsnd 7168 opabex3d 7954 opabex3rd 7955 opabex3 7956 fsplit 8105 rtrclreclem3 15011 isfunc 17818 griedg0ssusgr 28789 rgrusgrprc 29113 brabgaf 32104 qqhval2 33260 eulerpartlemgvv 33673 satfvsucsuc 34654 satf0op 34666 opelopabd 36325 opelopabb 36326 poimirlem26 36817 ecxrn 37560 dicelval3 40354 pellexlem5 41873 pellex 41875 opelopab4 43614 sprsymrelfvlem 46456 uspgrsprf 46822 uspgrsprf1 46823 |
Copyright terms: Public domain | W3C validator |