| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| elopab | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | opex 5427 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 3 | eleq1 2817 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ↔ 〈𝑥, 𝑦〉 ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 6 | 5 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 7 | elopabw 5489 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 8 | 1, 6, 7 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 〈cop 4598 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 |
| This theorem is referenced by: rexopabb 5491 vopelopabsb 5492 opelopabsb 5493 opelopabt 5495 opelopabga 5496 opabn0 5516 iunopabOLD 5523 elopabrOLD 5526 0nelopab 5530 elxp 5664 elopaelxpOLD 5732 elopaba 5774 elcnv 5843 cnvopab 6113 dfmpt3 6655 fmptsng 7145 fmptsnd 7146 opabex3d 7947 opabex3rd 7948 opabex3 7949 fsplit 8099 rtrclreclem3 15033 isfunc 17833 griedg0ssusgr 29199 rgrusgrprc 29524 brab2d 32542 brabgaf 32543 qqhval2 33979 eulerpartlemgvv 34374 satfvsucsuc 35359 satf0op 35371 opelopabd 37136 opelopabb 37137 poimirlem26 37647 ecxrn 38380 dicelval3 41181 pellexlem5 42828 pellex 42830 opelopab4 44548 sprsymrelfvlem 47495 uspgrsprf 48138 uspgrsprf1 48139 brab2dd 48820 |
| Copyright terms: Public domain | W3C validator |