![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elopab | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3498 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) | |
2 | opex 5474 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
3 | eleq1 2826 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ↔ 〈𝑥, 𝑦〉 ∈ V)) | |
4 | 2, 3 | mpbiri 258 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
6 | 5 | exlimivv 1929 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
7 | elopabw 5535 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
8 | 1, 6, 7 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 〈cop 4636 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5210 |
This theorem is referenced by: rexopabb 5537 vopelopabsb 5538 opelopabsb 5539 opelopabt 5541 opelopabga 5542 opabn0 5562 iunopabOLD 5569 elopabrOLD 5572 0nelopab 5576 elxp 5711 elopaelxpOLD 5778 elopaba 5820 elcnv 5889 cnvopab 6159 dfmpt3 6702 fmptsng 7187 fmptsnd 7188 opabex3d 7988 opabex3rd 7989 opabex3 7990 fsplit 8140 rtrclreclem3 15095 isfunc 17914 griedg0ssusgr 29296 rgrusgrprc 29621 brab2d 32626 brabgaf 32627 qqhval2 33944 eulerpartlemgvv 34357 satfvsucsuc 35349 satf0op 35361 opelopabd 37123 opelopabb 37124 poimirlem26 37632 ecxrn 38368 dicelval3 41162 pellexlem5 42820 pellex 42822 opelopab4 44548 sprsymrelfvlem 47414 uspgrsprf 47989 uspgrsprf1 47990 |
Copyright terms: Public domain | W3C validator |