![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elopab | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) | |
2 | opex 5484 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
3 | eleq1 2832 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ↔ 〈𝑥, 𝑦〉 ∈ V)) | |
4 | 2, 3 | mpbiri 258 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
6 | 5 | exlimivv 1931 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
7 | elopabw 5545 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
8 | 1, 6, 7 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: rexopabb 5547 vopelopabsb 5548 opelopabsb 5549 opelopabt 5551 opelopabga 5552 opabn0 5572 iunopabOLD 5579 elopabrOLD 5582 0nelopab 5586 0nelopabOLD 5587 elxp 5723 elopaelxpOLD 5790 elopaba 5832 elcnv 5901 cnvopab 6169 dfmpt3 6714 fmptsng 7202 fmptsnd 7203 opabex3d 8006 opabex3rd 8007 opabex3 8008 fsplit 8158 rtrclreclem3 15109 isfunc 17928 griedg0ssusgr 29300 rgrusgrprc 29625 brab2d 32629 brabgaf 32630 qqhval2 33928 eulerpartlemgvv 34341 satfvsucsuc 35333 satf0op 35345 opelopabd 37107 opelopabb 37108 poimirlem26 37606 ecxrn 38343 dicelval3 41137 pellexlem5 42789 pellex 42791 opelopab4 44522 sprsymrelfvlem 47364 uspgrsprf 47869 uspgrsprf1 47870 |
Copyright terms: Public domain | W3C validator |