| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| elopab | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | opex 5399 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 3 | eleq1 2819 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ↔ 〈𝑥, 𝑦〉 ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 6 | 5 | exlimivv 1933 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 7 | elopabw 5461 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 8 | 1, 6, 7 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 〈cop 4577 {copab 5148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 |
| This theorem is referenced by: rexopabb 5463 vopelopabsb 5464 opelopabsb 5465 opelopabt 5467 opelopabga 5468 opabn0 5488 0nelopab 5500 elxp 5634 elopaba 5743 elcnv 5811 cnvopab 6079 dfmpt3 6610 fmptsng 7097 fmptsnd 7098 opabex3d 7892 opabex3rd 7893 opabex3 7894 fsplit 8042 rtrclreclem3 14962 isfunc 17766 griedg0ssusgr 29238 rgrusgrprc 29563 brab2d 32580 brabgaf 32581 qqhval2 33987 eulerpartlemgvv 34381 satfvsucsuc 35401 satf0op 35413 opelopabd 37175 opelopabb 37176 poimirlem26 37686 ecxrn 38419 dicelval3 41219 pellexlem5 42866 pellex 42868 opelopab4 44584 sprsymrelfvlem 47521 uspgrsprf 48177 uspgrsprf1 48178 brab2dd 48859 |
| Copyright terms: Public domain | W3C validator |