MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopab Structured version   Visualization version   GIF version

Theorem elopab 5532
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem elopab
StepHypRef Expression
1 elex 3501 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ V)
2 opex 5469 . . . . 5 𝑥, 𝑦⟩ ∈ V
3 eleq1 2829 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ↔ ⟨𝑥, 𝑦⟩ ∈ V))
42, 3mpbiri 258 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V)
54adantr 480 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
65exlimivv 1932 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
7 elopabw 5531 . 2 (𝐴 ∈ V → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
81, 6, 7pm5.21nii 378 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3480  cop 4632  {copab 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-opab 5206
This theorem is referenced by:  rexopabb  5533  vopelopabsb  5534  opelopabsb  5535  opelopabt  5537  opelopabga  5538  opabn0  5558  iunopabOLD  5565  elopabrOLD  5568  0nelopab  5572  elxp  5708  elopaelxpOLD  5776  elopaba  5818  elcnv  5887  cnvopab  6157  dfmpt3  6702  fmptsng  7188  fmptsnd  7189  opabex3d  7990  opabex3rd  7991  opabex3  7992  fsplit  8142  rtrclreclem3  15099  isfunc  17909  griedg0ssusgr  29282  rgrusgrprc  29607  brab2d  32619  brabgaf  32620  qqhval2  33983  eulerpartlemgvv  34378  satfvsucsuc  35370  satf0op  35382  opelopabd  37142  opelopabb  37143  poimirlem26  37653  ecxrn  38388  dicelval3  41182  pellexlem5  42844  pellex  42846  opelopab4  44571  sprsymrelfvlem  47477  uspgrsprf  48062  uspgrsprf1  48063  brab2dd  48741
  Copyright terms: Public domain W3C validator