| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
| Ref | Expression |
|---|---|
| elopab | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) | |
| 2 | opex 5409 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 3 | eleq1 2821 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ↔ 〈𝑥, 𝑦〉 ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 6 | 5 | exlimivv 1933 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
| 7 | elopabw 5471 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 8 | 1, 6, 7 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 〈cop 4583 {copab 5157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5158 |
| This theorem is referenced by: rexopabb 5473 vopelopabsb 5474 opelopabsb 5475 opelopabt 5477 opelopabga 5478 opabn0 5498 0nelopab 5510 elxp 5644 elopaba 5754 elcnv 5822 cnvopab 6091 dfmpt3 6623 fmptsng 7111 fmptsnd 7112 opabex3d 7906 opabex3rd 7907 opabex3 7908 fsplit 8056 rtrclreclem3 14974 isfunc 17779 griedg0ssusgr 29264 rgrusgrprc 29589 brab2d 32609 brabgaf 32610 qqhval2 34067 eulerpartlemgvv 34461 satfvsucsuc 35481 satf0op 35493 opelopabd 37258 opelopabb 37259 poimirlem26 37759 ecxrn 38503 dicelval3 41352 pellexlem5 42990 pellex 42992 opelopab4 44708 sprsymrelfvlem 47652 uspgrsprf 48308 uspgrsprf1 48309 brab2dd 48989 |
| Copyright terms: Public domain | W3C validator |