Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elopab | ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 𝐴 ∈ V) | |
2 | opex 5373 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
3 | eleq1 2826 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ V ↔ 〈𝑥, 𝑦〉 ∈ V)) | |
4 | 2, 3 | mpbiri 257 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 ∈ V) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
6 | 5 | exlimivv 1936 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑) → 𝐴 ∈ V) |
7 | eqeq1 2742 | . . . . 5 ⊢ (𝑧 = 𝐴 → (𝑧 = 〈𝑥, 𝑦〉 ↔ 𝐴 = 〈𝑥, 𝑦〉)) | |
8 | 7 | anbi1d 629 | . . . 4 ⊢ (𝑧 = 𝐴 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
9 | 8 | 2exbidv 1928 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
10 | df-opab 5133 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
11 | 9, 10 | elab2g 3604 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑))) |
12 | 1, 6, 11 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 〈cop 4564 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 |
This theorem is referenced by: rexopabb 5434 vopelopabsb 5435 opelopabsb 5436 opelopabt 5438 opelopabga 5439 opabn0 5459 iunopab 5465 elopabr 5466 0nelopab 5471 0nelopabOLD 5472 elxp 5603 elopaelxp 5667 elopaba 5707 elcnv 5774 dfmpt3 6551 fmptsng 7022 fmptsnd 7023 opabex3d 7781 opabex3rd 7782 opabex3 7783 fsplit 7928 fsplitOLD 7929 rtrclreclem3 14699 isfunc 17495 griedg0ssusgr 27535 rgrusgrprc 27859 brabgaf 30849 qqhval2 31832 eulerpartlemgvv 32243 satfvsucsuc 33227 satf0op 33239 opelopabd 35239 opelopabb 35240 poimirlem26 35730 ecxrn 36444 dicelval3 39121 pellexlem5 40571 pellex 40573 opelopab4 42060 sprsymrelfvlem 44830 uspgrsprf 45196 uspgrsprf1 45197 |
Copyright terms: Public domain | W3C validator |