MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopab Structured version   Visualization version   GIF version

Theorem elopab 5462
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem elopab
StepHypRef Expression
1 elex 3457 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ V)
2 opex 5399 . . . . 5 𝑥, 𝑦⟩ ∈ V
3 eleq1 2819 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ↔ ⟨𝑥, 𝑦⟩ ∈ V))
42, 3mpbiri 258 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V)
54adantr 480 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
65exlimivv 1933 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
7 elopabw 5461 . 2 (𝐴 ∈ V → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
81, 6, 7pm5.21nii 378 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cop 4577  {copab 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-opab 5149
This theorem is referenced by:  rexopabb  5463  vopelopabsb  5464  opelopabsb  5465  opelopabt  5467  opelopabga  5468  opabn0  5488  0nelopab  5500  elxp  5634  elopaba  5743  elcnv  5811  cnvopab  6079  dfmpt3  6610  fmptsng  7097  fmptsnd  7098  opabex3d  7892  opabex3rd  7893  opabex3  7894  fsplit  8042  rtrclreclem3  14962  isfunc  17766  griedg0ssusgr  29238  rgrusgrprc  29563  brab2d  32580  brabgaf  32581  qqhval2  33987  eulerpartlemgvv  34381  satfvsucsuc  35401  satf0op  35413  opelopabd  37175  opelopabb  37176  poimirlem26  37686  ecxrn  38419  dicelval3  41219  pellexlem5  42866  pellex  42868  opelopab4  44584  sprsymrelfvlem  47521  uspgrsprf  48177  uspgrsprf1  48178  brab2dd  48859
  Copyright terms: Public domain W3C validator