MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopab Structured version   Visualization version   GIF version

Theorem elopab 5490
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem elopab
StepHypRef Expression
1 elex 3471 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ V)
2 opex 5427 . . . . 5 𝑥, 𝑦⟩ ∈ V
3 eleq1 2817 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ↔ ⟨𝑥, 𝑦⟩ ∈ V))
42, 3mpbiri 258 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V)
54adantr 480 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
65exlimivv 1932 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
7 elopabw 5489 . 2 (𝐴 ∈ V → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
81, 6, 7pm5.21nii 378 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cop 4598  {copab 5172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173
This theorem is referenced by:  rexopabb  5491  vopelopabsb  5492  opelopabsb  5493  opelopabt  5495  opelopabga  5496  opabn0  5516  iunopabOLD  5523  elopabrOLD  5526  0nelopab  5530  elxp  5664  elopaelxpOLD  5732  elopaba  5774  elcnv  5843  cnvopab  6113  dfmpt3  6655  fmptsng  7145  fmptsnd  7146  opabex3d  7947  opabex3rd  7948  opabex3  7949  fsplit  8099  rtrclreclem3  15033  isfunc  17833  griedg0ssusgr  29199  rgrusgrprc  29524  brab2d  32542  brabgaf  32543  qqhval2  33979  eulerpartlemgvv  34374  satfvsucsuc  35359  satf0op  35371  opelopabd  37136  opelopabb  37137  poimirlem26  37647  ecxrn  38380  dicelval3  41181  pellexlem5  42828  pellex  42830  opelopab4  44548  sprsymrelfvlem  47495  uspgrsprf  48138  uspgrsprf1  48139  brab2dd  48820
  Copyright terms: Public domain W3C validator