![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elopab | Structured version Visualization version GIF version |
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elopab | ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ V) | |
2 | opex 5463 | . . . . 5 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
3 | eleq1 2821 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ↔ ⟨𝑥, 𝑦⟩ ∈ V)) | |
4 | 2, 3 | mpbiri 257 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V) |
6 | 5 | exlimivv 1935 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V) |
7 | elopabw 5525 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) | |
8 | 1, 6, 7 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 |
This theorem is referenced by: rexopabb 5527 vopelopabsb 5528 opelopabsb 5529 opelopabt 5531 opelopabga 5532 opabn0 5552 iunopabOLD 5559 elopabrOLD 5562 0nelopab 5566 0nelopabOLD 5567 elxp 5698 elopaelxpOLD 5764 elopaba 5806 elcnv 5874 dfmpt3 6681 fmptsng 7162 fmptsnd 7163 opabex3d 7948 opabex3rd 7949 opabex3 7950 fsplit 8099 rtrclreclem3 15003 isfunc 17810 griedg0ssusgr 28511 rgrusgrprc 28835 brabgaf 31824 qqhval2 32950 eulerpartlemgvv 33363 satfvsucsuc 34344 satf0op 34356 opelopabd 36010 opelopabb 36011 poimirlem26 36502 ecxrn 37245 dicelval3 40039 pellexlem5 41556 pellex 41558 opelopab4 43297 sprsymrelfvlem 46144 uspgrsprf 46510 uspgrsprf1 46511 |
Copyright terms: Public domain | W3C validator |