MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpr2OLD Structured version   Visualization version   GIF version

Theorem elpr2OLD 4587
Description: Obsolete version of elpr2 4586 as of 25-May-2024. (Contributed by NM, 14-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elpr2.1 𝐵 ∈ V
elpr2.2 𝐶 ∈ V
Assertion
Ref Expression
elpr2OLD (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))

Proof of Theorem elpr2OLD
StepHypRef Expression
1 elex 3450 . 2 (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V)
2 elpr2.1 . . . 4 𝐵 ∈ V
3 eleq1 2826 . . . 4 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
42, 3mpbiri 257 . . 3 (𝐴 = 𝐵𝐴 ∈ V)
5 elpr2.2 . . . 4 𝐶 ∈ V
6 eleq1 2826 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
75, 6mpbiri 257 . . 3 (𝐴 = 𝐶𝐴 ∈ V)
84, 7jaoi 854 . 2 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐴 ∈ V)
9 elprg 4582 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
101, 8, 9pm5.21nii 380 1 (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562  df-pr 4564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator