![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpr2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of elpr2 4653 as of 25-May-2024. (Contributed by NM, 14-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpr2.1 | ⊢ 𝐵 ∈ V |
elpr2.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elpr2OLD | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V) | |
2 | elpr2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | eleq1 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ V) |
5 | elpr2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
6 | eleq1 2820 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
7 | 5, 6 | mpbiri 258 | . . 3 ⊢ (𝐴 = 𝐶 → 𝐴 ∈ V) |
8 | 4, 7 | jaoi 854 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ V) |
9 | elprg 4649 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
10 | 1, 8, 9 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1540 ∈ wcel 2105 Vcvv 3473 {cpr 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-sn 4629 df-pr 4631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |