Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpr2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of elpr2 4586 as of 25-May-2024. (Contributed by NM, 14-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpr2.1 | ⊢ 𝐵 ∈ V |
elpr2.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elpr2OLD | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V) | |
2 | elpr2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | eleq1 2826 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ V) |
5 | elpr2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
6 | eleq1 2826 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
7 | 5, 6 | mpbiri 257 | . . 3 ⊢ (𝐴 = 𝐶 → 𝐴 ∈ V) |
8 | 4, 7 | jaoi 854 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ V) |
9 | elprg 4582 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
10 | 1, 8, 9 | pm5.21nii 380 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |