![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpr2 | Structured version Visualization version GIF version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
elpr2.1 | ⊢ 𝐵 ∈ V |
elpr2.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elpr2 | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3414 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V) | |
2 | elpr2.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | eleq1 2847 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
4 | 2, 3 | mpbiri 250 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ V) |
5 | elpr2.2 | . . . 4 ⊢ 𝐶 ∈ V | |
6 | eleq1 2847 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
7 | 5, 6 | mpbiri 250 | . . 3 ⊢ (𝐴 = 𝐶 → 𝐴 ∈ V) |
8 | 4, 7 | jaoi 846 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ V) |
9 | elprg 4419 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
10 | 1, 8, 9 | pm5.21nii 370 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 836 = wceq 1601 ∈ wcel 2107 Vcvv 3398 {cpr 4400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-un 3797 df-sn 4399 df-pr 4401 |
This theorem is referenced by: elopg 5166 elxr 12261 fprodex01 30135 nofv 32399 |
Copyright terms: Public domain | W3C validator |