MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpr2 Structured version   Visualization version   GIF version

Theorem elpr2 4422
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) (Proof shortened by JJ, 23-Jul-2021.)
Hypotheses
Ref Expression
elpr2.1 𝐵 ∈ V
elpr2.2 𝐶 ∈ V
Assertion
Ref Expression
elpr2 (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))

Proof of Theorem elpr2
StepHypRef Expression
1 elex 3414 . 2 (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V)
2 elpr2.1 . . . 4 𝐵 ∈ V
3 eleq1 2847 . . . 4 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
42, 3mpbiri 250 . . 3 (𝐴 = 𝐵𝐴 ∈ V)
5 elpr2.2 . . . 4 𝐶 ∈ V
6 eleq1 2847 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
75, 6mpbiri 250 . . 3 (𝐴 = 𝐶𝐴 ∈ V)
84, 7jaoi 846 . 2 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐴 ∈ V)
9 elprg 4419 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
101, 8, 9pm5.21nii 370 1 (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wo 836   = wceq 1601  wcel 2107  Vcvv 3398  {cpr 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-v 3400  df-un 3797  df-sn 4399  df-pr 4401
This theorem is referenced by:  elopg  5166  elxr  12261  fprodex01  30135  nofv  32399
  Copyright terms: Public domain W3C validator