| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprn2 | Structured version Visualization version GIF version | ||
| Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elprn2 | ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4597 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 3 | neneq 2934 | . . 3 ⊢ (𝐴 ≠ 𝐶 → ¬ 𝐴 = 𝐶) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 = 𝐶) |
| 5 | 2, 4 | olcnd 877 | 1 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: esplymhp 33589 |
| Copyright terms: Public domain | W3C validator |