Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elprn2 Structured version   Visualization version   GIF version

Theorem elprn2 43065
Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elprn2 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐶) → 𝐴 = 𝐵)

Proof of Theorem elprn2
StepHypRef Expression
1 neneq 2948 . . 3 (𝐴𝐶 → ¬ 𝐴 = 𝐶)
21adantl 481 . 2 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐶) → ¬ 𝐴 = 𝐶)
3 elpri 4580 . . . 4 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
43adantr 480 . . 3 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐶) → (𝐴 = 𝐵𝐴 = 𝐶))
5 orcom 866 . . . 4 ((𝐴 = 𝐵𝐴 = 𝐶) ↔ (𝐴 = 𝐶𝐴 = 𝐵))
6 df-or 844 . . . 4 ((𝐴 = 𝐶𝐴 = 𝐵) ↔ (¬ 𝐴 = 𝐶𝐴 = 𝐵))
75, 6bitri 274 . . 3 ((𝐴 = 𝐵𝐴 = 𝐶) ↔ (¬ 𝐴 = 𝐶𝐴 = 𝐵))
84, 7sylib 217 . 2 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐶) → (¬ 𝐴 = 𝐶𝐴 = 𝐵))
92, 8mpd 15 1 ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴𝐶) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator