| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elprn2 | Structured version Visualization version GIF version | ||
| Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elprn2 | ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neneq 2932 | . . 3 ⊢ (𝐴 ≠ 𝐶 → ¬ 𝐴 = 𝐶) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 = 𝐶) |
| 3 | elpri 4616 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 5 | orcom 870 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐵)) | |
| 6 | df-or 848 | . . . 4 ⊢ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐵) ↔ (¬ 𝐴 = 𝐶 → 𝐴 = 𝐵)) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ↔ (¬ 𝐴 = 𝐶 → 𝐴 = 𝐵)) |
| 8 | 4, 7 | sylib 218 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → (¬ 𝐴 = 𝐶 → 𝐴 = 𝐵)) |
| 9 | 2, 8 | mpd 15 | 1 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |