|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elprn2 | Structured version Visualization version GIF version | ||
| Description: A member of an unordered pair that is not the "second", must be the "first". (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| elprn2 | ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neneq 2946 | . . 3 ⊢ (𝐴 ≠ 𝐶 → ¬ 𝐴 = 𝐶) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 = 𝐶) | 
| 3 | elpri 4649 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | 
| 5 | orcom 871 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐵)) | |
| 6 | df-or 849 | . . . 4 ⊢ ((𝐴 = 𝐶 ∨ 𝐴 = 𝐵) ↔ (¬ 𝐴 = 𝐶 → 𝐴 = 𝐵)) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ↔ (¬ 𝐴 = 𝐶 → 𝐴 = 𝐵)) | 
| 8 | 4, 7 | sylib 218 | . 2 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → (¬ 𝐴 = 𝐶 → 𝐴 = 𝐵)) | 
| 9 | 2, 8 | mpd 15 | 1 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐴 ≠ 𝐶) → 𝐴 = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {cpr 4628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-un 3956 df-sn 4627 df-pr 4629 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |