Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcmptdm Structured version   Visualization version   GIF version

Theorem limcmptdm 42277
Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcmptdm.f 𝐹 = (𝑥𝐴𝐵)
limcmptdm.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
limcmptdm.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
limcmptdm (𝜑𝐴 ⊆ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem limcmptdm
StepHypRef Expression
1 limcmptdm.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 limcmptdm.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
31, 2dmmptd 6465 . 2 (𝜑 → dom 𝐹 = 𝐴)
4 limcmptdm.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
5 limcrcl 24477 . . . 4 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
64, 5syl 17 . . 3 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
76simp2d 1140 . 2 (𝜑 → dom 𝐹 ⊆ ℂ)
83, 7eqsstrrd 3954 1 (𝜑𝐴 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  cmpt 5110  dom cdm 5519  wf 6320  (class class class)co 7135  cc 10524   lim climc 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-pm 8392  df-limc 24469
This theorem is referenced by:  neglimc  42289  addlimc  42290  0ellimcdiv  42291  reclimc  42295
  Copyright terms: Public domain W3C validator