Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcmptdm Structured version   Visualization version   GIF version

Theorem limcmptdm 45757
Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcmptdm.f 𝐹 = (𝑥𝐴𝐵)
limcmptdm.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
limcmptdm.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
limcmptdm (𝜑𝐴 ⊆ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem limcmptdm
StepHypRef Expression
1 limcmptdm.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 limcmptdm.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
31, 2dmmptd 6631 . 2 (𝜑 → dom 𝐹 = 𝐴)
4 limcmptdm.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
5 limcrcl 25803 . . . 4 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
64, 5syl 17 . . 3 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
76simp2d 1143 . 2 (𝜑 → dom 𝐹 ⊆ ℂ)
83, 7eqsstrrd 3966 1 (𝜑𝐴 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wss 3898  cmpt 5174  dom cdm 5619  wf 6482  (class class class)co 7352  cc 11011   lim climc 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-pm 8759  df-limc 25795
This theorem is referenced by:  neglimc  45769  addlimc  45770  0ellimcdiv  45771  reclimc  45775
  Copyright terms: Public domain W3C validator