Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limcmptdm | Structured version Visualization version GIF version |
Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
limcmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
limcmptdm.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
limcmptdm.c | ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) |
Ref | Expression |
---|---|
limcmptdm | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | limcmptdm.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | dmmptd 6578 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | limcmptdm.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) | |
5 | limcrcl 25038 | . . . 4 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) |
7 | 6 | simp2d 1142 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ℂ) |
8 | 3, 7 | eqsstrrd 3960 | 1 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ↦ cmpt 5157 dom cdm 5589 ⟶wf 6429 (class class class)co 7275 ℂcc 10869 limℂ climc 25026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm 8618 df-limc 25030 |
This theorem is referenced by: neglimc 43188 addlimc 43189 0ellimcdiv 43190 reclimc 43194 |
Copyright terms: Public domain | W3C validator |