Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limcmptdm | Structured version Visualization version GIF version |
Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
limcmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
limcmptdm.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
limcmptdm.c | ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) |
Ref | Expression |
---|---|
limcmptdm | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | limcmptdm.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
3 | 1, 2 | dmmptd 6562 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
4 | limcmptdm.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐹 limℂ 𝐷)) | |
5 | limcrcl 24943 | . . . 4 ⊢ (𝐶 ∈ (𝐹 limℂ 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) |
7 | 6 | simp2d 1141 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ℂ) |
8 | 3, 7 | eqsstrrd 3956 | 1 ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ↦ cmpt 5153 dom cdm 5580 ⟶wf 6414 (class class class)co 7255 ℂcc 10800 limℂ climc 24931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-pm 8576 df-limc 24935 |
This theorem is referenced by: neglimc 43078 addlimc 43079 0ellimcdiv 43080 reclimc 43084 |
Copyright terms: Public domain | W3C validator |