![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limcmptdm | Structured version Visualization version GIF version |
Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
limcmptdm.f | β’ πΉ = (π₯ β π΄ β¦ π΅) |
limcmptdm.b | β’ ((π β§ π₯ β π΄) β π΅ β β) |
limcmptdm.c | β’ (π β πΆ β (πΉ limβ π·)) |
Ref | Expression |
---|---|
limcmptdm | β’ (π β π΄ β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmptdm.f | . . 3 β’ πΉ = (π₯ β π΄ β¦ π΅) | |
2 | limcmptdm.b | . . 3 β’ ((π β§ π₯ β π΄) β π΅ β β) | |
3 | 1, 2 | dmmptd 6692 | . 2 β’ (π β dom πΉ = π΄) |
4 | limcmptdm.c | . . . 4 β’ (π β πΆ β (πΉ limβ π·)) | |
5 | limcrcl 25382 | . . . 4 β’ (πΆ β (πΉ limβ π·) β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π· β β)) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π· β β)) |
7 | 6 | simp2d 1143 | . 2 β’ (π β dom πΉ β β) |
8 | 3, 7 | eqsstrrd 4020 | 1 β’ (π β π΄ β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3947 β¦ cmpt 5230 dom cdm 5675 βΆwf 6536 (class class class)co 7405 βcc 11104 limβ climc 25370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-pm 8819 df-limc 25374 |
This theorem is referenced by: neglimc 44349 addlimc 44350 0ellimcdiv 44351 reclimc 44355 |
Copyright terms: Public domain | W3C validator |