Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcmptdm Structured version   Visualization version   GIF version

Theorem limcmptdm 42220
Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcmptdm.f 𝐹 = (𝑥𝐴𝐵)
limcmptdm.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
limcmptdm.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
limcmptdm (𝜑𝐴 ⊆ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem limcmptdm
StepHypRef Expression
1 limcmptdm.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 limcmptdm.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
31, 2dmmptd 6473 . 2 (𝜑 → dom 𝐹 = 𝐴)
4 limcmptdm.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
5 limcrcl 24475 . . . 4 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
64, 5syl 17 . . 3 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
76simp2d 1140 . 2 (𝜑 → dom 𝐹 ⊆ ℂ)
83, 7eqsstrrd 3981 1 (𝜑𝐴 ⊆ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wss 3908  cmpt 5122  dom cdm 5532  wf 6330  (class class class)co 7140  cc 10524   lim climc 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-pm 8396  df-limc 24467
This theorem is referenced by:  neglimc  42232  addlimc  42233  0ellimcdiv  42234  reclimc  42238
  Copyright terms: Public domain W3C validator